Timing of estrogen therapy is crucial

October, 2011

A rat study provides further evidence that the conflicting findings on the benefit of estrogen therapy stem from the importance of timing.

The very large and long-running Women's Health Initiative study surprised everyone when it produced its finding that hormone therapy generally increased rather than decreased stroke risk as well as other health problems. But one explanation for that finding might be that many of the women only received hormone replacement therapy years after menopause. There are indications that timing is crucial.

This new rat study involved female rats equivalent to human 60-65 year olds, about a decade past menopause.  An enzyme called CHIP (carboxyl terminus of Hsc70 interacting protein) was found to increase binding with estrogen receptors, resulting in about half the receptors getting hauled to the cell's proteosome to be chopped up and degraded. When some of the aged rats were later treated with estrogen, mortality increased. When middle-aged rats were treated with estrogen, on the other hand, results were positive.

In other words, putting in extra estrogen after the number of estrogen receptors in the brain has been dramatically decreased is a bad idea.

While this study focused on mortality, other research has produced similar conflicting results as to whether estrogen therapy helps fight age-related cognitive impairment in women (see my report). It’s interesting to note that this effect only occurred in the hippocampus — estrogen receptors in the uterus were unaffected.

Reference: 

Related News

Data from 6257 older adults (aged 55-90) evaluated from 2005-2012 has revealed that concerns about memory should be taken seriously, with subjective complaints associated with a doubled risk of developing mild cognitive impairment or dementia, and subjective complaints supported by a loved on

Analysis of mitochondrial DNA (mtDNA) in the cerebrospinal fluid has found that both symptomatic Alzheimer’s patients and asymptomatic patients at risk of Alzheimer

Comparison of the EEGs of 27 healthy older adults, 27 individuals with mild Alzheimer's and 22 individuals with moderate cases of Alzheimer’s, has found statistically significant differences across the three groups, using an algorithm that dissects brain waves of varying frequencies.

Data from two longitudinal studies of older adults (a nationally representative sample of older adults, and the Alzheimer’s Disease Neuroimaging Initiative) has found that a brief cognitive test can distinguish memory decline associated with healthy aging from more serious memory disorders, year

Analysis of 40 spinal marrow samples, 20 of which belonged to Alzheimer’s patients, has identified six

Data from 848 adults of all ages has found that brain volume in the default mode network declined in both healthy and pathological aging, but the greatest decline occurred in Alzheimer’s patients and in those who progressed from mild cognitive impairment to Alzheimer’s disease.

New research supports the classification system for preclinical Alzheimer’s proposed two years ago. The classification system divides preclinical Alzheimer's into three stages:

Initial findings from an analysis of cerebrospinal fluid taken between 1995 and 2005 from 265 middle-aged healthy volunteers, of whom 75% had a close family member wi

Cognitive testing for dementia has a problem in that low scores on some tests may simply reflect a person's weakness in some cognitive areas, or the presence of a relatively benign form of mild cognitive impairment (one that is not going to progress to dementia).

A French study has predicted with 90% accuracy which patients with mild cognitive impairment would receive a clinical diagnosis of Alzheimer's disease within the following two years.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news