New mechanism adds to understanding of Alzheimer's causes

  • Age-related changes in gene enhancers have been linked to faster cognitive decline in Alzheimer's brains.

New findings identify a mechanism that accelerates aging in the brain and gives rise to Alzheimer's disease.

The findings center on “enhancers”, which turn the activity of genes up or down based on influences like aging and environmental factors. Comparing enhancers in brain cells of people at varying stages of Alzheimer's and healthy people has revealed that in normal aging, there is a progressive loss of important epigenetic marks on enhancers. This loss is accelerated in the brains of people with Alzheimer's.

These enhancers also over-activate a suite of genes involved in Alzheimer's pathology, spurring the formation of plaques and tangles, and reactivating the cell cycle in fully formed cells — a highly toxic combination.

The study also links enhancer changes to the rate of cognitive decline in Alzheimer's patients.

https://www.eurekalert.org/pub_releases/2019-05/vari-rtc051719.php

Reference: 

Related News

Analysis of 40 spinal marrow samples, 20 of which belonged to Alzheimer’s patients, has identified six

Blocking a receptor involved in inflammation in the brains of mice with severe Alzheimer’s produced marked recovery in blood flow and vascular reactivity, a dramatic reduction in toxic amyloid-beta, and significant improvements in learning and memory.

A multi-year study involving 207 healthy older adults, in which their spinal fluids were repeatedly sampled and their brains repeatedly scanned, has found that disruptions in the default mode network emerges about the same time as chemical markers of Alzheimer’s appear in the spinal fluid (decre

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The

Analyses of cerebrospinal fluid from 15 patients with Alzheimer's disease, 20 patients with mild cognitive impairment, and 21 control subjects, plus brain tissue from

Tau protein stabilizes structures that transport supplies from the center of the cell to the extremities, but sometimes some tau is not bound to these microtubules and instead clumps together into

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news