How stress affects your learning

October, 2012

A small study shows that stress makes it more likely for learning to use more complicated and subconscious processes that involve brain regions involved in habit and procedural learning.

We know that stress has a complicated relationship with learning, but in general its effect is negative, and part of that is due to stress producing anxious thoughts that clog up working memory. A new study adds another perspective to that.

The brain scanning study involved 60 young adults, of whom half were put under stress by having a hand immersed in ice-cold water for three minutes under the supervision of a somewhat unfriendly examiner, while the other group immersed their hand in warm water without such supervision (cortisol and blood pressure tests confirmed the stress difference).

About 25 minutes after this (cortisol reaches peak levels around 25 minutes after stress), participants’ brains were scanned while participants alternated between a classification task and a visual-motor control task. The classification task required them to look at cards with different symbols and learn to predict which combinations of cards announced rain and which sunshine. Afterward, they were given a short questionnaire to determine their knowledge of the task. The control task was similar but there were no learning demands (they looked at cards on the screen and made a simple perceptual decision).

In order to determine the strategy individuals used to do the classification task, ‘ideal’ performance was modeled for four possible strategies, of which two were ‘simple’ (based on single cues) and two ‘complex’ (based on multiple cues).

Here’s the interesting thing: while both groups were successful in learning the task, the two groups learned to do it in different ways. Far more of the non-stressed group activated the hippocampus to pursue a simple and deliberate strategy, focusing on individual symbols rather than combinations of symbols. The stressed group, on the other hand, were far more likely to use the striatum only, in a more complex and subconscious processing of symbol combinations.

The stressed group also remembered significantly fewer details of the classification task.

There was no difference between the groups on the (simple, perceptual) control task.

In other words, it seems that stress interferes with conscious, purposeful learning, causing the brain to fall back on more ‘primitive’ mechanisms that involve procedural learning. Striatum-based procedural learning is less flexible than hippocampus-based declarative learning.

Why should this happen? Well, the non-conscious procedural learning going on in the striatum is much less demanding of cognitive resources, freeing up your working memory to do something important — like worrying about the source of the stress.

Unfortunately, such learning will not become part of your more flexible declarative knowledge base.

The finding may have implications for stress disorders such as depression, addiction, and PTSD. It may also have relevance for a memory phenomenon known as “forgotten baby syndrome”, in which parents forget their babies in the car. This may be related to the use of non-declarative memory, because of the stress they are experiencing.

Reference: 

[3071] Schwabe, L., & Wolf O. T.
(2012).  Stress Modulates the Engagement of Multiple Memory Systems in Classification Learning.
The Journal of Neuroscience. 32(32), 11042 - 11049.

Related News

Back when I was young, sleep learning was a popular idea. The idea was that a tape would play while you were asleep, and learning would seep into your brain effortlessly. It was particularly advocated for language learning.

A study involving those with a strong genetic risk of developing Alzheimer’s has found that the first signs of the disease can be detected 25 years before symptoms are evident.

I’ve reported before on the evidence suggesting that carriers of the ‘Alzheimer’s gene’, APOE4, tend to have smaller brain volumes and perform worse on cognitive tests, despite being cognitively ‘normal’.

We’re all familiar with the experience of going to another room and forgetting why we’ve done so. The problem has been largely attributed to a failure of attention, but recent research suggests something rather more specific is going on.

In the study, 64 older adults (60-74; average 70) and 64 college students were compared on a word recognition task. Both groups first took a vocabulary test, on which they performed similarly. They were then presented with 12 lists of 15 semantically related words.

Students come into classrooms filled with inaccurate knowledge they are confident is correct, and overcoming these misconceptions is notoriously difficult. In recent years, research has shown that such false knowledge can be corrected with feedback.

A certain level of mental decline in the senior years is regarded as normal, but some fortunate few don’t suffer from any decline at all.

Previous research has found that carriers of the so-called

Research into the effects of cannabis on cognition has produced inconsistent results. Much may depend on extent of usage, timing, and perhaps (this is speculation) genetic differences.

When a middle-aged woman loses her memory after sex, it naturally makes the headlines. Many might equate this sort of headline to “Man marries alien”, but this is an example of a rare condition — temporary, you will be relieved to hear — known as transient global amnesia.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news