How stress affects your learning

October, 2012

A small study shows that stress makes it more likely for learning to use more complicated and subconscious processes that involve brain regions involved in habit and procedural learning.

We know that stress has a complicated relationship with learning, but in general its effect is negative, and part of that is due to stress producing anxious thoughts that clog up working memory. A new study adds another perspective to that.

The brain scanning study involved 60 young adults, of whom half were put under stress by having a hand immersed in ice-cold water for three minutes under the supervision of a somewhat unfriendly examiner, while the other group immersed their hand in warm water without such supervision (cortisol and blood pressure tests confirmed the stress difference).

About 25 minutes after this (cortisol reaches peak levels around 25 minutes after stress), participants’ brains were scanned while participants alternated between a classification task and a visual-motor control task. The classification task required them to look at cards with different symbols and learn to predict which combinations of cards announced rain and which sunshine. Afterward, they were given a short questionnaire to determine their knowledge of the task. The control task was similar but there were no learning demands (they looked at cards on the screen and made a simple perceptual decision).

In order to determine the strategy individuals used to do the classification task, ‘ideal’ performance was modeled for four possible strategies, of which two were ‘simple’ (based on single cues) and two ‘complex’ (based on multiple cues).

Here’s the interesting thing: while both groups were successful in learning the task, the two groups learned to do it in different ways. Far more of the non-stressed group activated the hippocampus to pursue a simple and deliberate strategy, focusing on individual symbols rather than combinations of symbols. The stressed group, on the other hand, were far more likely to use the striatum only, in a more complex and subconscious processing of symbol combinations.

The stressed group also remembered significantly fewer details of the classification task.

There was no difference between the groups on the (simple, perceptual) control task.

In other words, it seems that stress interferes with conscious, purposeful learning, causing the brain to fall back on more ‘primitive’ mechanisms that involve procedural learning. Striatum-based procedural learning is less flexible than hippocampus-based declarative learning.

Why should this happen? Well, the non-conscious procedural learning going on in the striatum is much less demanding of cognitive resources, freeing up your working memory to do something important — like worrying about the source of the stress.

Unfortunately, such learning will not become part of your more flexible declarative knowledge base.

The finding may have implications for stress disorders such as depression, addiction, and PTSD. It may also have relevance for a memory phenomenon known as “forgotten baby syndrome”, in which parents forget their babies in the car. This may be related to the use of non-declarative memory, because of the stress they are experiencing.

Reference: 

[3071] Schwabe, L., & Wolf O. T.
(2012).  Stress Modulates the Engagement of Multiple Memory Systems in Classification Learning.
The Journal of Neuroscience. 32(32), 11042 - 11049.

Related News

Do older adults forget as much as they think, or is it rather that they ‘misremember’?

A small study involving 50 younger adults (18-35; average age 24) has found that those with a higher BMI performed significantly worse on a computerised memory test called the “Treasure Hunt Task”.

Can you help protect yourself from the memory of traumatic events? A new study suggests that, by concentrating on concrete details as you live through the event, you can reduce the number of intrusive memories later experienced.

A small study that fitted 29 young adults (18-31) and 31 older adults (55-82) with a device that recorded steps taken and the vigor and speed with which they were made, has found that those older adults with a higher step rate performed better on memory tasks than those who were more sedentary.

A study involving 66 healthy young adults (average age 24) has revealed that different individuals have distinct brain connectivity patterns that are associated with different ways of experiencing and remembering the past.

Training in a mental imagery technique has been found to help multiple sclerosis patients in two memory domains often affected by the disease: autobiographical memory and episodic future thinking.

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).

We talk about memory for ‘events’, but how does the brain decide what an event is? How does it decide what is part of an event and what isn’t?

Sometime ago, I reported on a study showing that older adults could improve their memory for a future task (remembering to regularly test their blood sugar) by picturing themselves going through the process.

The

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.