Digital media may be changing how you think

  • Reading from a screen may encourage users to focus on concrete details rather than more abstract thinking.

Four studies involving a total of more than 300 younger adults (20-24) have looked at information processing on different forms of media. They found that digital platforms such as tablets and laptops for reading may make you more inclined to focus on concrete details rather than interpreting information more abstractly.

As much as possible, the material was presented on the different media in identical format.

In the first study, 76 students were randomly assigned to complete the Behavior Identification Form on either an iPad or a print-out. The Form assesses an individual's current preference for concrete or abstract thinking. Respondents have to choose one of two descriptions for a particular behavior — e.g., for “making a list”, the choice of description is between “getting organized” or “writing things down”. The form presents 25 items.

There was a marked difference between those filling out the form on the iPad vs on a physical print-out, with non-digital users showing a significantly higher preference for abstract descriptions than digital users (mean of 18.56 vs 13.75).

In the other three studies, the digital format was always a PDF on a laptop. In the first of these, 81 students read a short story by David Sedaris, then answered 24 multichoice questions on it, of which half were abstract and half concrete. Digital readers scored significantly lower on abstract questions (48% vs 66%), and higher on concrete questions (73% vs 58%).

In the next study, 60 students studied a table of information about four, fictitious Japanese car models for two minutes, before being required to select the superior model. While one model was objectively superior in regard to the attributes and attribute rating, the amount of detail means (as previous research has shown) that those employing a top-down “gist” processing do better than those using a bottom-up, detail-oriented approach. On this problem, 66% of the non-digital readers correctly chose the superior model, compared to 43% of the digital readers.

In the final study, 119 students performed the same task as in the preceding study, but all viewed the table on a laptop. Before viewing the table, however, some were assigned to one of two priming activities: a high-level task aimed at activating more abstract thinking (thinking about why they might pursue a health goal), or a low-level task aimed at activating more concrete thinking (thinking about how to pursue the same goal).

Being primed to think more abstractly did seem to help these digital users, with 48% of this group correctly answering the car judgment problem, compared to only 25% of those given the concrete priming activity, and 30% of the control group.

I note that the performance of the control group is substantially below the performance of the digital users in the previous study, although there was no apparent change in the methodology. However, this was not noted or explained in the paper, so I don't know why this was. It does lead me not to put too much weight on this idea that priming can help.

However, the findings do support the view that reading on digital devices does encourage a more concrete style of thinking, reinforcing the idea that we are inclined to process information more shallowly when we read it from a screen.

Of course, this is, as the researchers point out, not an indictment. Sometimes, this is the best way to approach certain tasks. But what it does suggest is that we need to consider what sort of processing is desirable, and modify our strategy accordingly. For example, you may find it helpful to print out material that requires a high level of abstract thinking, particularly if your degree of expertise in the subject means that it carries a high cognitive load.

http://www.eurekalert.org/pub_releases/2016-05/dc-dmm050516.php

Reference: 

Kaufman, G., & Flanagan, M. (2016). High-Low Split : Divergent Cognitive Construal Levels Triggered by Digital and Non-digital Platforms. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1–5. doi:10.1145/2858036.2858550 http://dl.acm.org/citation.cfm?doid=2858036.2858550

Related News

Memory begins with perception. We can’t remember what we don’t perceive, and our memory of things is influenced by how we perceive them.

As I’ve discussed on many occasions, a critical part of attention (and

Comparison of young adults (mean age 24.5) and older adults (mean age 69.1) in a visual memory test involving multitasking has pinpointed the greater problems older adults have with multitasking.

A study involving 171 sedentary, overweight 7- to 11-year-old children has found that those who participated in an exercise program improved both executive function and math achievement.

A link between positive mood and creativity is supported by a study in which 87 students were put into different moods (using music and video clips) and then given a category learning task to do (classifying sets of pictures with visually complex patterns).

A study involving 80 college students (34 men and 46 women) between the ages of 18 and 40, has found that those given a caffeinated energy drink reported feeling more stimulated and less tired than those given a decaffeinated soda or no drink.

We know active learning is better than passive learning, but for the first time a study gives us some idea of how that works. Participants in the imaging study were asked to memorize an array of objects and their exact locations in a grid on a computer screen.

If our brains are full of clusters of neurons resolutely only responding to specific features (as suggested in my earlier report), how do we bring it all together, and how do we switch from one point of interest to another?

A study involving young (average age 22) and older adults (average age 77) showed participants pictures of overlapping faces and places (houses and buildings) and asked them to identify the gender of the person.

Following on from earlier studies that found individual neurons were associated with very specific memories (such as a particular person), new research has shown that we can actually regulate the activity of specific neurons, increasing the firing rate of some while decreasing the rate of others

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.