Cognitive recovery after brain damage more complex than realized

January, 2011

Two new studies show us that recovery after brain damage is not as simple as one region ‘taking over’ for another, and that some regions are more easily helped than others.

When stroke or brain injury damages a part of the brain controlling movement or sensation or language, other parts of the brain can learn to compensate for this damage. It’s been thought that this is a case of one region taking over the lost function. Two new studies show us the story is not so simple, and help us understand the limits of this plasticity.

In the first study, six stroke patients who have lost partial function in their prefrontal cortex, and six controls, were briefly shown a series of pictures to test the ability to remember images for a brief time (visual working memory) while electrodes recorded their EEGs. When the images were shown to the eye connected to the damaged hemisphere, the intact prefrontal cortex (that is, the one not in the hemisphere directly receiving that visual input) responded within 300 to 600 milliseconds.

Visual working memory involves a network of brain regions, of which the prefrontal cortex is one important element, and the basal ganglia, deep within the brain, are another. In the second study, the researchers extended the experiment to patients with damage not only to the prefrontal cortex, but also to the basal ganglia. Those with basal ganglia damage had problems with visual working memory no matter which part of the visual field was shown the image.

In other words, basal ganglia lesions caused a more broad network deficit, while prefrontal cortex lesions resulted in a more limited, and recoverable, deficit. The findings help us understand the different roles these brain regions play in attention, and emphasize how memory and attention are held in networks. They also show us that the plasticity compensating for brain damage is more dynamic and flexible than we realized, with intact regions stepping in on a case by case basis, very quickly, but only when the usual region fails.

Reference: 

[2034] Voytek, B., Davis M., Yago E., Barcel F., Vogel E. K., & Knight R. T.
(2010).  Dynamic Neuroplasticity after Human Prefrontal Cortex Damage.
Neuron. 68(3), 401 - 408.

[2033] Voytek, B., & Knight R. T.
(2010).  Prefrontal cortex and basal ganglia contributions to visual working memory.
Proceedings of the National Academy of Sciences. 107(42), 18167 - 18172.

Related News

Contrary to previous laboratory studies showing that children with autism often demonstrate outstanding visual search skills, new research indicates that in real-life situations, children with autism are unable to search effectively for objects.

An imaging study of 10 illiterates, 22 people who learned to read as adults and 31 who did so as children, has confirmed that the visual word form area (involved in linking sounds with written symbols) showed more activation in better readers, although everyone had similar levels of activation i

In a study in which 14 volunteers were trained to recognize a faint pattern of bars on a computer screen that continuously decreased in faintness, the volunteers became able to recognize fainter and fainter patterns over some 24 days of training, and this correlated with stronger EEG signals fro

New imaging techniques used on macaque monkeys explains why we find it so easy to scan many items quickly when we’re focused on one attribute, and how we can be so blind to attributes and objects we’re not focused on.

Because people with damage to their

An experiment with congenitally deaf cats has revealed how deaf or blind people might acquire other enhanced senses. The deaf cats showed only two specific enhanced visual abilities: visual localization in the peripheral field and visual motion detection.

‘Face-blindness’ — prosopagnosia — is a condition I find fascinating, perhaps because I myself have a touch of it (it’s now recognized that this condition represents the end of a continuum rather than being an either/or proposition).

A couple of years ago I reported on a finding that walking in the park, and (most surprisingly) simply looking at photos of natural scenes, could improve memory and concentration (see below). Now a new study helps explain why.

Because male superiority in mental rotation appears to be evident at a very young age, it has been suggested that testosterone may be a factor.

Following a monkey study that found training in spatial memory could raise females to the level of males, and human studies suggesting the video games might help reduce gender differences in spatial processing (see below for these), a new study shows that training in spatial skills can eliminate

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news