Better physical fitness and lower aortic stiffness key to slower brain aging

  • A study found that physical fitness & arterial stiffness accounted for a third of the cognitive differences between older adults, completely erasing age as a factor.

An Australian study involving 102 older adults (60-90) has concluded that physical fitness and arterial stiffness account for a great deal of age-related memory decline.

The study that, while both physical fitness and aortic stiffness were associated with spatial working memory performance, the two factors affected cognition independently. More importantly, and surprisingly, statistical modelling found that, taking BMI and gender into account, fitness and aortic stiffness together explained a third (33%) of the individual differences in spatial working memory — with age no longer predicting any of the differences.

While physical fitness didn’t seem to affect central arterial stiffness, the researchers point out that only current fitness was assessed and long term fitness might be a better predictor of central arterial stiffness.

It's also worth noting that only one cognitive measure was used. However, this particular measure should be a good one for assessing cognition untainted by the benefits of experience — a purer measure of the ability to process information, as it were.

It would also be interesting to extend the comparison to younger adults. I hope future research will explore these aspects.

Nevertheless, the idea that age-related cognitive decline might be largely, or even entirely, accounted for by one's physical fitness and the state of one's arteries, is an immensely appealing one.

Fitness was assessed with the Six-Minute Walk test which involved participants walking back and forth between two markers placed 10 metres apart for six minutes. Only participants who completed the full six minutes were included in the analysis.

https://www.eurekalert.org/pub_releases/2018-06/ip-bpf061118.php

Reference: 

Related News

A survey of 7,072 older adults in six provinces across China, with one rural and one urban community in each province, has identified 359 older adults with dementia and 328 with depression.

A survey of 7796 older adults (65+) living in three geographic areas in England has allowed us to compare dementia rates over time, with an identical survey having been taken between 1989 and 1994. The overall prevalence of dementia fell significantly, from 8.3% to 6.5%.

A large Danish study comparing two groups of nonagenarians born 10 years apart has found that not only were people born in 1915 nearly a third (32%) more likely to reach the age of 95 than those in the 1905 cohort, but members of the group born in 1915 performed significantly better on tests of

A five-year study involving 525 older adults (70+) found 46 had Alzheimer’s or aMCI and a further 28 went on to develop the conditions.

A three-year study involving 152 adults aged 50 and older, of whom 52 had been recently diagnosed with mild cognitive impairment and 31 were diagnosed with Alzheimer's disease, has found that those with mild or no cognitive impairment who initially had amyloid-beta plaques showed greater cogniti

More evidence for early changes in the eye in Alzheimer’s disease comes from a study involving both rats and postmortem human retinas.

Blocking a receptor involved in inflammation in the brains of mice with severe Alzheimer’s produced marked recovery in blood flow and vascular reactivity, a dramatic reduction in toxic amyloid-beta, and significant improvements in learning and memory.

A multi-year study involving 207 healthy older adults, in which their spinal fluids were repeatedly sampled and their brains repeatedly scanned, has found that disruptions in the default mode network emerges about the same time as chemical markers of Alzheimer’s appear in the spinal fluid (decre

An analysis of the anatomical connectivity in the brains of 15 people with Alzheimer's disease, 68 with mild cognitive impairment and 28 healthy older individuals, has found several measures showed disease effects:

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news