hippocampus

means "sea horse", and is named for its shape. It is one of the oldest parts of the brain, and is buried deep inside, within the limbic lobe. The hippocampus is important for the forming, and perhaps long-term storage, of associative and episodic memories. Specifically, the hippocampus has been implicated in (among other things) the encoding of face-name associations, the retrieval of face-name associations, the encoding of events, the recall of personal memories in response to smells. It may also be involved in the processes by which memories are consolidated during sleep.

Long-term meditation fights age-related cognitive decline

August, 2011

Another study adds to the weight of evidence that meditating has cognitive benefits. The latest finding points to brain-wide improvements in connectivity.

Following on from research showing that long-term meditation is associated with gray matter increases across the brain, an imaging study involving 27 long-term meditators (average age 52) and 27 controls (matched by age and sex) has revealed pronounced differences in white-matter connectivity between their brains.

The differences reflect white-matter tracts in the meditators’ brains being more numerous, more dense, more myelinated, or more coherent in orientation (unfortunately the technology does not yet allow us to disentangle these) — thus, better able to quickly relay electrical signals.

While the differences were evident among major pathways throughout the brain, the greatest differences were seen within the temporal part of the superior longitudinal fasciculus (bundles of neurons connecting the front and the back of the cerebrum) in the left hemisphere; the corticospinal tract (a collection of axons that travel between the cerebral cortex of the brain and the spinal cord), and the uncinate fasciculus (connecting parts of the limbic system, such as the hippocampus and amygdala, with the frontal cortex) in both hemispheres.

These findings are consistent with the regions in which gray matter increases have been found. For example, the tSLF connects with the caudal area of the temporal lobe, the inferior temporal gyrus, and the superior temporal gyrus; the UNC connects the orbitofrontal cortex with the amygdala and hippocampal gyrus

It’s possible, of course, that those who are drawn to meditation, or who are likely to engage in it long term, have fundamentally different brains from other people. However, it is more likely (and more consistent with research showing the short-term effects of meditation) that the practice of meditation changes the brain.

The precise mechanism whereby meditation might have these effects can only be speculated. However, more broadly, we can say that meditation might induce physical changes in the brain, or it might be protecting against age-related reduction. Most likely of all, perhaps, both processes might be going on, perhaps in different regions or networks.

Regardless of the mechanism, the evidence that meditation has cognitive benefits is steadily accumulating.

The number of years the meditators had practiced ranged from 5 to 46. They reported a number of different meditation styles, including Shamatha, Vipassana and Zazen.

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

tags strategies: 

Why our brains produce fewer new neurons in old age

August, 2011

New research explains why fewer new brain cells are created in the hippocampus as we get older.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones). Now we know that neurogenesis in the hippocampus is vital for some operations, and that the production of new neurons declines with age (leading to the idea that the reduction in neurogenesis may be one reason for age-related cognitive decline).

What we didn’t know is why this happens. A new study, using mice genetically engineered so that different classes of brain cells light up in different colors, has now revealed the life cycle of stem cells in the brain.

Adult stem cells differentiate into progenitor cells that ultimately give rise to mature neurons. It had been thought that the stem cell population remained stable, but that these stem cells gradually lose their ability to produce neurons. However, the mouse study reveals that during the mouse's life span, the number of brain stem cells decreased 100-fold. Although the rate of this decrease actually slows with age, and the output per cell (the number of progenitor cells each stem cell produces) increases, nevertheless the pool of stem cells is dramatically reduced over time.

The reason this happens (and why it wasn’t what we expected) is explained in a computational model developed from the data. It seems that stem cells in the brain differ from other stem cells. Adult stem cells in the brain wait patiently for a long time until they are activated. They then undergo a series of rapid divisions that give rise to progeny that differentiate into neurons, before ‘retiring’ to become astrocytes. What this means is that, unlike blood or gut stem cells (that renew themselves many times), brain stem cells are only used once.

This raises a somewhat worrying question: if we encourage neurogenesis (e.g. by exercise or drugs), are we simply using up stem cells prematurely? The researchers suggest the answer depends on how the neurogenesis has been induced. Parkinson's disease and traumatic brain injury, for example, activate stem cells directly, and so may reduce the stem cell population. However, interventions such as exercise stimulate the progenitor cells, not the stem cells themselves.

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

tags problems: 

Sleep and memory - round-up of recent reports

July, 2011

A round-up of recent reports relating to the role of sleep in consolidating memory.

Sleep can boost classroom performance of college students

There’s a lot of evidence that memories are consolidated during sleep, but most of it has involved skill learning. A new study extends the findings to complex declarative information — specifically, information from a lecture on microeconomics.

The study involved 102 university undergraduates who had never taken an economics course. In the morning or evening they completed an introductory, virtual lecture that taught them about concepts and problems related to supply and demand microeconomics. They were then tested on the material either immediately, after a 12-hour period that included sleep, after 12 hours without sleep, or after one week. The test included both basic problems that they had been trained to solve, and "transfer" problems that required them to extend their knowledge to novel, but related, problems.

Performance was better for those who slept, and this was especially so for the novel, 'transfer' integration problems.

Rule-learning task also benefits from sleep

Another complex cognitive task was investigated in a study of 54 college undergraduates who were taught to play a card game for rewards of play money in which wins and losses for various card decks mimic casino gambling (the Iowa Gambling Task is typically used to assess frontal lobe function). Those who had a normal night’s sleep as part of the study drew from decks that gave them the greatest winnings four times more often than those who spent the 12-hour break awake, and they better understood the underlying rules of the game.

The students were given a brief morning or afternoon preview of the gambling task (too brief to learn the underlying rule). They returned twelve hours later (i.e., either after a normal night’s sleep, or after a day of their usual activities), when they played the full gambling task for long enough to learn the rules. Those who got to sleep between the two sessions played better and showed a better understanding of the rules when questioned.

To assure that time of day didn’t explain the different performance, two groups of 17 and 21 subjects carried out both the preview and the full task either in the morning or the evening. Time of day made no difference.

Sleep problems may be a link between perceived racism and poor health

Analysis of data from the 2006 Behavioral Risk Factor Surveillance System, involving 7,093 people in Michigan and Wisconsin, suggests that sleep deprivation may be one mediator of the oft-reported association between discrimination and poorer cognitive performance.

The survey asked the question: "Within the past 12 months when seeking health care, do you feel your experiences were worse than, the same as, or better than for people of other races?" Taking this as an index of perceived racism, and comparing it with reports of sleep disturbance (difficulty sleeping at least six nights in the past two weeks), the study found that individuals who perceived racial discrimination were significantly more likely to experience sleep difficulties, even after allowing for socioeconomic factors and depression. Risk of sleep disturbance was nearly doubled in those who perceived themselves as discriminated against, and although this was reduced after depression was taken into account, it remained significant.

Sleep problems more prevalent than expected in urban minority children

Ten families also underwent sleep monitoring at home for five to seven days. All children who completed actigraphy monitoring had shortened sleep duration, with an average sleep duration of 8 hours, significantly less than the 10 to 11 hours recommended for children in this age group.

It’s worth noting that parents consistently overestimated sleep duration. Although very aware of bedtime and wake time, parents are less aware of time spent awake during the night.

(Also note that the figures I quote are taken from the conference abstract, which differ from those quoted in the press release.)

Rocking really does help sleep

If you or your loved one is having troubles getting to sleep, you might like to note an intriguing little study involving 12 healthy males (aged 22-38, and good sleepers). The men twice took a 45-minute afternoon nap on a bed that could slowly rock. On one occasion, it was still; on the other, it rocked. Rocking brought about faster sleep, faster transition to deeper sleep, and increased slow oscillations and sleep spindles (hallmarks of deep sleep). All these results were evident in every participant.

Sleep helps long-term memory in two ways

A fruit fly study points to two dominant theories of sleep being correct. The two theories are (a) that synapses are pruned during sleep, ensuring that only the strongest connections survive (synaptic homeostasis), and (b) that memories are replayed and consolidated during sleep, so that some connections are reactivated and thus made stronger (memory consolidation).

The experiment was made possible by the development of a new strain of fruit fly that can be induced to fall asleep when temperatures rise. The synaptic homeostasis model was supported when flies were placed in socially enriched environments, then either induced to sleep or not, before being taught a courtship ritual. Those that slept developed long-term memories of the ritual, while those that didn’t sleep didn’t remember it. The memory consolidation theory was supported when flies trained using a protocol designed to give them short-term memories retained a lasting memory, if sleep was induced immediately after the training.

In other words, it seems that both pruning and replaying are important for building long-term memories.

Mouse studies identify the roots of memory impairment resulting from sleep deprivation

Sleep deprivation in known to result in increased levels of adenosine in the brain, whether fruit fly or human (caffeine blocks the effects of adenosine). New mice studies now reveal the mechanism.

Mice given a drug that blocked a particular adenosine receptor in the hippocampus (the A1 receptor) failed to show the normal memory impairment evoked by sleep deprivation (being woken halfway through their normal 12-hour sleep schedule). The same results occurred if mice were genetically engineered to lack a gene involved in the production of glial transmitters (necessary to produce adenosine).

Memory was tested by the mice being allowed to explore a box with two objects, and then returned to the box on the next day, where one of the two objects had been moved. They would normally explore the moved object more than other objects, but sleep-deprived mice don’t usually react to the change, because they don’t remember where the object had been. In both these cases, the sleep-deprived mice showed no memory impairment.

Both the drugged and genetically protected mice also showed greater synaptic plasticity in the hippocampus after being sleep deprived than the untreated group.

The two groups reveal two parts of the chemical pathway involved in sleep deprivation. The genetic engineering experiment shows that the adenosine comes from glia's release of adenosine triphosphate (ATP). The drug experiment shows that the adenosine goes to the A1 receptor in the hippocampus.

The findings provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of sleep deprivation on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the cognitive deficits induced by sleep loss.

 

Reference: 

Scullin M, McDaniel M, Howard D, Kudelka C. 2011. Sleep and testing promote conceptual learning of classroom materials.  Presented Tuesday, June 14, in Minneapolis, Minn., at SLEEP 2011, the 25th Anniversary Meeting of the Associated Professional Sleep Societies LLC (APSS).

[2297] Pace‐Schott, E. F., Nave G., Morgan A., & Spencer R. M. C.
(Submitted).  Sleep‐dependent modulation of affectively guided decision‐making.
Journal of Sleep Research.

Grandner MA, Hale L, Jackson NJ, Patel NP, Gooneratne N, Troxel WM. 2011. Sleep disturbance and daytime fatigue associated with perceived racial discrimination. Presented Tuesday, June 14, in Minneapolis, Minn., at SLEEP 2011, the 25th Anniversary Meeting of the Associated Professional Sleep Societies LLC (APSS).

Sheares, B.J., Dorsey, K.B., Lamm, C.I., Wei, Y., Kattan, M., Mellins, R.B. & Evans, D. 2011. Sleep Problems In Urban Minority Children May Be More Prevalent Than Previously Recognized. Presented at the ATS 2011 International Conference in Denver.

[2330] Bayer, L., Constantinescu I., Perrig S., Vienne J., Vidal P-P., Mühlethaler M., et al.
(2011).  Rocking synchronizes brain waves during a short nap.
Current Biology. 21(12), R461-R462 - R461-R462.

[2331] Donlea, J. M., Thimgan M. S., Suzuki Y., Gottschalk L., & Shaw P. J.
(2011).  Inducing Sleep by Remote Control Facilitates Memory Consolidation in Drosophila.
Science. 332(6037), 1571 - 1576.

[2287] Florian, C., Vecsey C. G., Halassa M. M., Haydon P. G., & Abel T.
(2011).  Astrocyte-Derived Adenosine and A1 Receptor Activity Contribute to Sleep Loss-Induced Deficits in Hippocampal Synaptic Plasticity and Memory in Mice.
The Journal of Neuroscience. 31(19), 6956 - 6962.

Source: 

Sleep can boost classroom performance of college students http://www.eurekalert.org/pub_releases/2011-06/aaos-scb060611.php Rule-learning task also benefits from sleep http://medicalxpress.com/news/2011-05-excellent-science-based-advice.html Sleep problems may be a link between perceived racism and poor health http://medicalxpress.com/news/2011-06-problems-link-racism-poor-health.html Sleep problems more prevalent than expected in urban minority children http://medicalxpress.com/news/2011-05-problems-prevalent-urban-minority-... Rocking really does help sleep http://www.scientificamerican.com/podcast/episode.cfm?id=rocking-increas... Sleep helps long-term memory in two ways http://the-scientist.com/2011/06/23/sleep-on-it/ Mouse studies identify the roots of memory impairment resulting from sleep deprivation http://www.eurekalert.org/pub_releases/2011-05/uop-pri051711.php

Topics: 

tags lifestyle: 

tags memworks: 

Religious factors may influence brain shrinkage in old age

July, 2011
  • An intriguing new study suggests life-changing religious experiences may result in greater brain shrinkage in old age.

The brain tends to shrink with age, with different regions being more affected than others. Atrophy of the hippocampus, so vital for memory and learning, is associated with increased risk of developing Alzheimer’s, and has also been linked to depression.

In a study involving 268 older adults (58+), the hippocampus of those reporting a life-changing religious experience was found to be shrinking significantly more compared to those not reporting such an experience. Significantly greater hippocampal atrophy was also found among born-again Protestants, Catholics, and those with no religious affiliation, compared with Protestants not identifying as born-again.

The participants are not a general sample — they were originally recruited for the NeuroCognitive Outcomes of Depression in the Elderly. However, some of the participants were from the control group, who had no history of depression. Brain scans were taken at the beginning of the study, and then every two years. The length of time between the baseline scan and the final scan ranged from 2 to 8 years (average was 4).

Questions about religious experiences were asked in an annual survey, so could change over time. Two-thirds of the group was female, and 87% were white. The average age was 68. At baseline, 42% of the group was non-born-again Protestant, 36% born-again Protestant; 8% Catholic; 6% other religion. Only 7% reported themselves as having no religion. By the end of the study, 44% (119 participants) reported themselves born-again, and 13% (36) reported having had life-changing religious experiences.

These associations persisted after depression status, acute stress, and social support were taken into account. Nor did other religious factors (such as prayer, meditation, or Bible study) account for the changes.

It is still possible that long-term stress might play a part in this association — the study measured acute rather than cumulative stress. The researchers suggest that life-changing religious experiences can be stressful, if they don’t fit in with your existing beliefs or those of your family and friends, or if they lead to new social systems that add to your stress.

Of course, the present results can be interpreted in several ways — is it the life-changing religious experience itself that is the crucial factor? Or the factors leading up to that experience? Or the consequences of that experience? Still, it’s certainly an intriguing finding, and it will be interesting to see more research expanding and confirming (or not!) this result.

More generally, the findings may help clarify the conflicting research about the effects of religion on well-being, by pointing to the fact that religion can’t be considered a single factor, but one subject to different variables, some of which may be positive and others not.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

Young binge drinkers less able to learn new verbal information

July, 2011

Binge drinking university students, regardless of gender, performed more poorly on tests of verbal memory, but not on a test of visual memory.

Following animal research indicating that binge drinking damages the hippocampus, and other research showing that this learning and memory center is still developing during adolescence, a new study has investigated the effects of binge drinking on learning in university students. The study, involving 122 Spanish university students (aged 18-20), of whom half engaged in binge drinking, found a clear association between binge drinking and a lower ability to learn new verbal information.

Specifically, binge drinkers were more affected by interference in the Rey Auditory Verbal Learning Test, and remembered fewer words; they also performed worse on the Weschler Memory Scale-3rd ed. (WMS-III) Logical Memory subtest, both on immediate and delayed recall. However, there were no differences between the two groups on the WMS-III Family Pictures subtest (measuring visual declarative memory).

These results persisted even after controlling for other possible confounding variables such as intellectual levels, history of neurological or psychopathological disorders, other drug use, or family history of alcoholism.

The genders were evenly represented in both groups. Interestingly, and in contradiction of some other research, women were not found to be more vulnerable to the neurotoxic effects of binge drinking.

Reference: 

[2298] Parada, M., Corral M., Caamaño‐Isorna F., Mota N., Crego A., Holguín S R., et al.
(Submitted).  Binge Drinking and Declarative Memory in University Students.
Alcoholism: Clinical and Experimental Research.

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

Air pollution impacts cognitive performance

July, 2011

A study of Michigan public schools, and a mouse study, add to growing evidence that high levels of air pollution negatively affect learning and memory.

Following several recent studies pointing to the negative effect of air pollution on children’s cognitive performance (see this April 2010 news report and this May 2011 report), a study of public schools in Michigan has found that 62.5% of the 3660 schools in the state are located in areas with high levels of industrial pollution, and those in areas with the highest industrial air pollution levels had the lowest attendance rates and the highest proportions of students who failed to meet state educational testing standards in English and math. Attendance rates are a potential indicator of health levels.

Minority students were especially hit by this — 81.5% of African American and 62.1% of Hispanic students attend schools in the top 10% of the most polluted areas, compared to 44.4% of white students.

Almost all (95%) of the industrial air pollution around schools comes from 12 chemicals (diisocyanates, manganese, sulfuric acid, nickel, chlorine, chromium, trimethylbenzene, hydrochloric acid, molybdenum trioxide, lead, cobalt and glycol ethers) that are all implicated in negative health effects, including increased risk of respiratory, cardiovascular, developmental and neurological disorders, as well as cancer.

There are potentially two issues here: the first is that air pollution causes health issues which lower school attendance and thus impacts academic performance; the other is that the pollution also directly effects the brain, thus affecting cognitive performance.

A new mouse study looking at the effects of air pollution on learning and memory has now found that male mice exposed to polluted air for six hours a day, five days a week for 10 months (nearly half their lifespan), performed significantly more poorly on learning and memory tasks than those male mice living in filtered air. They also showed more signs of anxiety- and depressive-like behaviors.

These changes in behavior and cognition were linked to clear differences in the hippocampus — those exposed to polluted air had fewer dendritic spines in parts of the hippocampus (CA1 and CA3 regions), shorter dendrites and overall reduced cell complexity. Previous mouse research has also found that such pollution causes widespread inflammation in the body, and can be linked to high blood pressure, diabetes and obesity. In the present study, the same low-grade inflammation was found in the hippocampus. The hippocampus is particularly sensitive to damage caused by inflammation.

The level of pollution the mice were exposed to was equivalent to what people may be exposed to in some polluted urban areas.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags lifestyle: 

tags memworks: 

tags problems: 

Why it gets harder to remember as we get older

June, 2011

A new study finds that older adults have more difficulty in recognizing new information as ‘new’, and this is linked to degradation of the path leading into the hippocampus.

As we get older, when we suffer memory problems, we often laughingly talk about our brain being ‘full up’, with no room for more information. A new study suggests that in some sense (but not the direct one!) that’s true.

To make new memories, we need to recognize that they are new memories. That means we need to be able to distinguish between events, or objects, or people. We need to distinguish between them and representations already in our database.

We are all familiar with the experience of wondering if we’ve done something. Is it that we remember ourselves doing it today, or are we remembering a previous occasion? We go looking for the car in the wrong place because the memory of an earlier occasion has taken precedence over today’s event. As we age, we do get much more of this interference from older memories.

In a new study, the brains of 40 college students and older adults (60-80) were scanned while they viewed pictures of everyday objects and classified them as either "indoor" or "outdoor." Some of the pictures were similar but not identical, and others were very different. It was found that while the hippocampus of young students treated all the similar pictures as new, the hippocampus of older adults had more difficulty with this, requiring much more distinctiveness for a picture to be classified as new.

Later, the participants were presented with completely new pictures to classify, and then, only a few minutes later, shown another set of pictures and asked whether each item was "old," "new" or "similar." Older adults tended to have fewer 'similar' responses and more 'old' responses instead, indicating that they could not distinguish between similar items.

The inability to recognize information as "similar" to something seen recently is associated with “representational rigidity” in two areas of the hippocampus: the dentate gyrus and CA3 region. The brain scans from this study confirm this, and find that this rigidity is associated with changes in the dendrites of neurons in the dentate/CA3 areas, and impaired integrity of the perforant pathway — the main input path into the hippocampus, from the entorhinal cortex. The more degraded the pathway, the less likely the hippocampus is to store similar memories as distinct from old memories.

Apart from helping us understand the mechanisms of age-related cognitive decline, the findings also have implications for the treatment of Alzheimer’s. The hippocampus is one of the first brain regions to be affected by the disease. The researchers plan to conduct clinical trials in early Alzheimer's disease patients to investigate the effect of a drug on hippocampal function and pathway integrity.

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

Long-term users of ecstasy risk structural brain damage

June, 2011
  • A small study suggests that regular ecstasy use produces brain atrophy, especially in the hippocampus.

Imaging the brains of 10 young men who were long term users of ecstasy and seven of their healthy peers with no history of ecstasy use has revealed a significantly smaller hippocampus in those who used ecstasy. The overall proportion of gray matter was also lower, suggesting the effects of ecstasy may not be restricted to the hippocampus.

Both groups had used similar amounts of recreational drugs other than ecstasy, and drank alcohol regularly. The ecstasy group had not taken ecstasy for more than two months before the start of the study on average.

Reference: 

[2218] den Hollander, B., Schouw M., Groot P., Huisman H., Caan M., Barkhof F., et al.
(2011).  Preliminary evidence of hippocampal damage in chronic users of ecstasy.
Journal of Neurology, Neurosurgery & Psychiatry.

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Hippocampal volume and PTSD

April, 2011

A new study supports the association between hippocampal size and recovery from PTSD, pointing to the role of neurogenesis in stress resilience.

Following previous research suggesting that the volume of the hippocampus was reduced in some people with chronic PTSD, a twin study indicated that this may not be simply a sign that stress has shrunk the hippocampus, but that those with a smaller hippocampus are at greater risk of PTSD. Now a new study has found that Gulf War veterans who recovered from PTSD had, on average, larger hippocampi than veterans who still suffer from PTSD. Those who recovered had hippocampi of similar size to control subjects who had never had PTSD.

The study involved 244 Gulf War veterans, of whom 82 had lifetime PTSD, 44 had current PTSD, and 38 had current depression.

Because we don’t know hippocampal size prior to trauma, the findings don’t help us decide whether hippocampal size is a cause or an effect (or perhaps it would be truer to say, don’t help us decide the relative importance of these factors, because it seems most plausible that both are significant).

The really important question, of course, is whether an effective approach to PTSD treatment would be to work on increasing hippocampal volume. Exercise and mental stimulation, for example, are known to increase the creation of new brain cells in the hippocampus. In this case, the main mediator is probably the negative effects of stress (which reduces neurogenesis). There is some evidence that antidepressant treatment might increase hippocampal volume in people with PTSD.

The other conclusion we can derive from these findings is that perhaps we should not simply think of building hippocampal volume / creating new brain cells as a means of building cognitive reserve, thus protecting us from cognitive decline and dementia. We should also think of it as a means of improving our emotional resilience and protecting us from the negative effects of stress and trauma.

Reference: 

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

tags problems: 

Learning ability is refreshed by sleep spindles

March, 2011

A new study confirms that learning ability declines with time awake, and shows that stage 2 non-REM sleep, achieved during a long afternoon nap, can re-invigorate your brain.

In a study involving 44 young adults given a rigorous memorizing task at noon and another such task at 6pm, those who took a 90-minute nap during the interval improved their ability to learn on the later task, while those who stayed awake found it harder to learn.

The degree to which the nappers were refreshed correlated with the amount of stage 2 non-REM sleep they experienced. This sleep phase is characterized by sleep spindles, which are associated with brain activity between the hippocampus and prefrontal cortex. Spindle-rich sleep occurs mostly in the second half of the night, so those who don’t get their quota of sleep are probably getting less.

The finding confirms the idea that learning ability decreases the more time you spend awake.

Reference: 

[2144] Mander, B. A., Santhanam S., Saletin J. M., & Walker M. P.
(2011).  Wake deterioration and sleep restoration of human learning.
Current Biology. 21(5), R183-R184 - R183-R184.

Source: 

Topics: 

tags lifestyle: 

tags strategies: 

Pages

Subscribe to RSS - hippocampus
Error | About memory

Error

The website encountered an unexpected error. Please try again later.