training

Some cognitive training helps less-educated older adults more

  • A large study in which older adults underwent various types of cognitive training has found that less-educated adults benefited more from training designed to speed processing.

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

While the effects of reasoning and memory training did not differ as a function of how much education the individual had, those older adults with less than a complete high school education experienced a 50% greater benefit from speed of information processing training than college graduates. This advantage was maintained for three years after the end of the training.

The training involved ten 60 to 75-minute sessions over six weeks that focused on visual search and processing information in shorter and shorter times.

Both reasoning and information processing speed training resulted in improved targeted cognitive abilities for 10 years among participants, but memory training did not. Memory training focused on mnemonic strategies for remembering lists and sequences of items, text material, and main ideas and details of stories and other text-based information. Reasoning training focused on improving the ability to solve problems containing a serial pattern.

The researchers speculate that speed of information processing training might help those with less than 12 years of education, who are at greater risk of dementia, close the gap between them and those with more education.

The training modules have been translated into online games delivered by Posit Science.

Less educated study participants were slightly older, less likely to be married, more likely to be African-American, and more likely to have hypertension or diabetes as well as heart disease than the more educated older adults.

http://www.eurekalert.org/pub_releases/2016-01/iu-irs012816.php

Reference: 

Source: 

tags development: 

Topics: 

tags strategies: 

Mental imagery training improves multiple sclerosis patients' cognition

  • Difficulties in remembering past events and imagining future ones are often experienced by those with multiple sclerosis.
  • A trial involving patients with MS has found that training in mentally visualizing imaginery scenarios can improve their ability to recall past events.
  • Deficits in event memory and imagination have also been found in older adults, so this finding might have wider application.

Training in a mental imagery technique has been found to help multiple sclerosis patients in two memory domains often affected by the disease: autobiographical memory and episodic future thinking.

The study involved 40 patients with relapsing-remitting MS, all of whom were receiving regular drug therapy and all of whom had significant brain atrophy. Participants were randomly assigned to one of three groups, one of which received the imagery training (17 participants), while the other two were controls — a control receiving a sham verbal training (10) and a control receiving no training (13). The six training sessions lasted two hours and occurred once or twice a week.

The training involved:

  • mental visualization exercises of increasing difficulty, using 10 items that the patient had to imagine and describe, looking at both static aspects (such as color and shape) and an action carried out with the item
  • guided construction exercises, using 5 scenarios involving several characters (so, for example, the patient might start with the general idea of a cook preparing a meal, and be guided through more complexities, such as the type of table, the ingredients being used, etc)
  • self-visualization exercises, in which the patient imagined themselves within a scenario.

Autobiographical memory and episodic future thinking were assessed, before and after, using an adapted version of the Autobiographical Interview, which involves subjects recalling events from earlier periods in their life, in response to specific cue words. The events are supposed to be unique, and the subjects are asked to recall as many details as possible.

Only those receiving the training showed a significant improvement in their scores.

Those who had the imagery training also reported an increase in general self-confidence, with higher levels of control and vitality.

Remembering past events and imagining future ones are crucial cognitive abilities, with more far-reaching impacts than may be immediately obvious. For example, episodic future thought is important for forming and carrying out intentions.

These are also areas which may be affected by age. A recent study, for example, found that older adults are less likely to spontaneously acquire items that would later allow a problem to be solved, and are also less likely to subsequently use these items to solve the problems. An earlier study found that older adults have more difficulty in imagining future experiences.

These results, then, that show us that people with deficits in specific memory domains can be helped by specific training, is not only of interest to those with MS, but also more generally.

http://www.eurekalert.org/pub_releases/2015-08/ip-mvi082515.php

Reference: 

Topics: 

tags problems: 

tags strategies: 

tags development: 

tags memworks: 

Coping with cognitive decline in MS

Cognitive impairment affects 40-65% of people with MS. Why? In the past year, a number of studies have helped us build a better picture of the precise nature of cognitive problems that may affect multiple sclerosis sufferers:

  • poorer performance on executive function tasks is fully explained by slower processing speed (which is presumably a function of the degradation in white matter characteristic of MS)
  • slowing in processing speed is associated with weaker connections between the executive area and the brain regions involved in carrying out cognitive tasks
  • cognitive reserve helps counter the decline in memory and cognitive efficiency
  • brain reserve (greater brain volume, ie less shrinkage) helps counter the decline in cognitive efficiency
  • working memory capacity explains the link between cognitive reserve and long-term memory
  • subjective cognitive fatigue is linked to the time spent on the task, not on its difficulty
  • mnemonic training helps protect against cognitive decline, but appears to be less helpful in those with slow processing speed.

What all this implies is that a multi-pronged approach is called for, involving:

  • working memory training
  • training in effective memory strategies
  • practice in breaking down cognitive tasks into more manageable chunks of time
  • practice in framing tasks to accommodate slower processing speed
  • physical and mental activities that encourage neurogenesis (growing more neurons) and synaptogenesis (growing more connections).

Here's some more detail on those studies:

Slow processing speed accounts for executive deficits in MS

A study of 50 patients with MS and 28 healthy controls found no differences in performance on executive function tasks when differences in processing speed were controlled for. In other words, although MS patients performed more poorly than controls on these tasks, the difference was fully accounted for by the differences in processing speed. There were no differences in performance when there was no processing speed component to the task. Similarly, MS patients with a greater degree of brain atrophy performed more poorly than those with less atrophy, but again, this only occurred when there was a processing speed aspect to the task, and was fully accounted for by processing speed differences.

http://www.eurekalert.org/pub_releases/2014-09/kf-kfs091614.php

[3939] Leavitt VM, Wylie G, Krch D, Chiaravalloti ND, DeLuca J, Sumowski JF. Does slowed processing speed account for executive deficits in multiple sclerosis? Evidence from neuropsychological performance and structural neuroimaging. Rehabilitation Psychology [Internet]. 2014 ;59(4):422 - 428. Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0037517

Functional connectivity factor in cognitive decline in MS

A brain imaging study involving 29 participants with relapsing-remitting MS and 23 age- and sex- matched healthy controls found that, as expected, those with MS were much slower on a processing speed task, although they were as accurate as the controls. This slowing was associated with weaker functional connections between the dorsolateral prefrontal cortex (the executive area) and the regions responsible for carrying out the task. It's thought that this is probably due to decreased white matter (white matter degradation is symptomatic of MS).

http://www.eurekalert.org/pub_releases/2015-07/cfb-srb070715.php

[3938] Hubbard NA, Hutchison JL, Turner MP, Sundaram S, Oasay L, Robinson D, Strain J, Weaver T, Davis SL, Remington GM, et al. Asynchrony in Executive Networks Predicts Cognitive Slowing in Multiple Sclerosis. Neuropsychology. 2015 .

Brain and cognitive reserve protect against cognitive decline in MS

A study compared memory, cognitive efficiency, vocabulary, and brain volume in 40 patients with MS, at baseline and 4.5 years later. After controlling for disease progression, they found that those with better vocabulary (a proxy for cognitive reserve) experienced less decline in memory and cognitive efficiency, and those with less brain atrophy over the period showed less decline in cognitive efficiency.

Cognitive efficiency is a somewhat fuzzy concept, but essentially has to do with how much time and effort you need to acquire new knowledge; in this study, it was assessed using the Symbol Digit Modalities Test and Paced Auditory Serial Addition Task, two tests commonly used to detect cognitive impairment in MS patients.

http://www.eurekalert.org/pub_releases/2014-04/kf-mrf043014.php

[3943] Sumowski JF, Rocca MA, Leavitt VM, Dackovic J, Mesaros S, Drulovic J, DeLuca J, Filippi M. Brain reserve and cognitive reserve protect against cognitive decline over 4.5 years in MS. Neurology [Internet]. 2014 ;82(20):1776 - 1783. Available from: http://www.neurology.org/cgi/doi/10.1212/WNL.0000000000000433

Working memory capacity accounts for link between cognitive reserve & better memory

A study involving 70 patients with MS has found that working memory capacity explained the relationship between cognitive reserve and long-term memory, suggesting that interventions targeted at working memory may help protect against decline in long-term memory.

http://www.eurekalert.org/pub_releases/2014-09/kf-kfm090914.php

[3941] Sandry J, Sumowski JF. Working Memory Mediates the Relationship between Intellectual Enrichment and Long-Term Memory in Multiple Sclerosis: An Exploratory Analysis of Cognitive Reserve. Journal of the International Neuropsychological Society [Internet]. 2014 ;20(08):868 - 872. Available from: http://www.journals.cambridge.org/abstract_S1355617714000630

Cognitive fatigue linked to time on task, not difficulty

A study investigating cognitive fatigue in 32 individuals with MS and 24 controls has found that subjective and objective fatigue were independent of one another, and that subjective cognitive fatigue increased as time on task increased. This increase in cognitive fatigue was greater in the MS group. No relationship was found between cognitive fatigue and cognitive load. Fatigue was greater for the processing speed task than the working memory task.

In other words, the length of time spent is far more important than the difficulty of the task.

http://www.eurekalert.org/pub_releases/2015-01/kf-kfr012115.php

[3940] Sandry J, Genova HM, Dobryakova E, DeLuca J, Wylie G. Subjective cognitive fatigue in multiple sclerosis depends on task length. Frontiers in Neurology. 2014 ;5:214.

Story mnemonic training helps some

A series of small studies have found cognitive benefits for MS patients from a 10-session training program designed to build their memory skills using a modified story mnemonic. The MEMREHAB Trial involved 85 patients with MS, of whom 45 received the training. In the most recent analyses of the data, the benefits were found to be maintained six months later, but unfortunately, it appears that those with processing speed deficits gain less benefit from the training.

The training consists of four 45-minute sessions focused on building imagery skills, in which participants were given a story with highly visualizable scenes and given facilitated practice in using visualization to help them remember the story. In the next four sessions, they were given lists of words and instructed in how to build a memorable story from these words, that they could visualize. The sessions employed increasingly unrelated word lists. In the final two sessions, participants were taught how to apply the technique in real-world situations.

http://www.eurekalert.org/pub_releases/2014-08/kf-kfs080814.php

[3936] Chiaravalloti ND, DeLuca J. The influence of cognitive dysfunction on benefit from learning and memory rehabilitation in MS: A sub-analysis of the MEMREHAB trial. Multiple Sclerosis (Houndmills, Basingstoke, England). 2015 .

[3937] Dobryakova E, Wylie GR, DeLuca J, Chiaravalloti ND. A pilot study examining functional brain activity 6 months after memory retraining in MS: the MEMREHAB trial. Brain Imaging and Behavior [Internet]. 2014 ;8(3):403 - 406. Available from: http://link.springer.com/10.1007/s11682-014-9309-9

Topics: 

tags problems: 

tags strategies: 

tags memworks: 

Cognitive Training

Older news items (pre-2010) brought over from the old website

Brain-training to improve working memory boosts fluid intelligence

General intelligence is often separated into "fluid" and "crystalline" components, of which fluid intelligence is considered more reflective of “pure” intelligence, and largely resistant to training and learning effects. However, in a new study in which participants were given a series of training exercises designed to improve their working memory, fluid intelligence was found to have significantly improved, with the amount of improvement increasing with time spent training. The small study contradicts decades of research showing that improving on one kind of cognitive task does not improve performance on other kinds, so has been regarded with some skepticism by other researchers. More research is definitely needed, but the memory task did differ from previous studies, engaging executive functions such as those that inhibit irrelevant items, monitor performance, manage two tasks simultaneously, and update memory.

Jaeggi, S.M., Buschkuehl, M., Jonides, J. & Perrig, W.J. 2008. Improving fluid intelligence with training on working memory. PNAS, 105 (19), 6829-6833.

http://www.physorg.com/news128699895.html
http://www.sciam.com/article.cfm?id=study-shows-brain-power-can-be-bolstered

Training improves working memory capacity

Working memory capacity has traditionally been thought to be constant. Recent studies, however, suggest that working memory can be improved by training. In this recent imaging study, it was found that adults who practiced working memory tasks for 5 weeks showed increased brain activity in the middle frontal gyrus and superior and inferior parietal cortices. These changes could be evidence of training-induced plasticity in the neural systems that underlie working memory.

Olesen, P.J., Westerberg, H. & Klingberg, T. 2004. Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75-9.

http://www.nature.com/cgi-taf/DynaPage.taf?file=/neuro/journal/v7/n1/abs/nn1165.html

tags strategies: 

Attention Training

See also

Meditation (which is in fact the main category of attention training!)

Nature (one of the best ways of 'refreshing' your attention)

Older news items (pre-2010) brought over from the old website

Music training helps you hear better in noisy rooms

I’ve often talked about the benefits of musical training for cognition, but here’s a totally new benefit. A study involving 31 younger adults (19-32) with normal hearing has found that musicians (at least 10 years of music experience; music training before age 7; practicing more than 3 times weekly within previous 3 years) were significantly better at hearing and repeating sentences in increasingly noisy conditions, than the non-musicians. The number of years of music practice also correlated positively with better working memory and better tone discrimination ability. Hearing speech in noisy environments is of course difficult for everyone, but particularly for older adults, who are likely to have hearing and memory loss, and for poor readers.

[960] Parbery-Clark A, Skoe E, Lam C, Kraus N. Musician enhancement for speech-in-noise. Ear and Hearing [Internet]. 2009 ;30(6):653 - 661. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19734788

http://www.eurekalert.org/pub_releases/2009-08/nu-tum081709.php

Meditation technique can temporarily improve visuospatial abilities

And continuing on the subject of visual short-term memory, a study involving experienced practitioners of two styles of meditation: Deity Yoga (DY) and Open Presence (OP) has found that, although meditators performed similarly to nonmeditators on two types of visuospatial tasks (mental rotation and visual memory), when they did the tasks immediately after meditating for 20 minutes (while the nonmeditators rested or did something else), practitioners of the DY style of meditation showed a dramatic improvement compared to OP practitioners and controls. In other words, although the claim that regular meditation practice can increase your short-term memory capacity was not confirmed, it does appear that some forms of meditation can temporarily (and dramatically) improve it. Since the form of meditation that had this effect was one that emphasizes visual imagery, it does support the idea that you can improve your imagery and visual memory skills (even if you do need to ‘warm up’ before the improvement is evident).

[860] Kozhevnikov M, Louchakova O, Josipovic Z, Motes MA. The enhancement of visuospatial processing efficiency through Buddhist Deity meditation. Psychological Science: A Journal of the American Psychological Society / APS [Internet]. 2009 ;20(5):645 - 653. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19476594

http://www.sciencedaily.com/releases/2009/04/090427131315.htm
http://www.eurekalert.org/pub_releases/2009-04/afps-ssb042709.php

A walk in the park a day keeps mental fatigue away

Many of us who work indoors are familiar with the benefits of a walk in the fresh air, but a new study gives new insight into why, and how, it works. In two experiments, researchers found memory performance and attention spans improved by 20% after people spent an hour interacting with nature. The intriguing finding was that this effect was achieved not only by walking in the botanical gardens (versus walking along main streets of Ann Arbor), but also by looking at photos of nature (versus looking at photos of urban settings). The findings are consistent with a theory that natural environments are better at restoring attention abilities, because they provide a more coherent pattern of stimulation that requires less effort, as opposed to urban environments that are provide complex and often confusing stimulation that captures attention dramatically and requires directed attention (e.g., to avoid being hit by a car).

[279] Berman MG, Jonides J, Kaplan S. The cognitive benefits of interacting with nature. Psychological Science: A Journal of the American Psychological Society / APS [Internet]. 2008 ;19(12):1207 - 1212. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19121124

http://www.eurekalert.org/pub_releases/2008-12/afps-awi121808.php
http://www.physorg.com/news148663388.html

Even toddlers can ‘chunk' information for better remembering

We all know it’s easier to remember a long number (say a phone number) when it’s broken into chunks. Now a study has found that we don’t need to be taught this; it appears to come naturally to us. The study showed 14 months old children could track only three hidden objects at once, in the absence of any grouping cues, demonstrating the standard limit of working memory. However, with categorical or spatial cues, the children could remember more. For example, when four toys consisted of two groups of two familiar objects, cats and cars, or when six identical orange balls were grouped in three groups of two.

[196] Feigenson L, Halberda J. From the Cover: Conceptual knowledge increases infants' memory capacity. Proceedings of the National Academy of Sciences [Internet]. 2008 ;105(29):9926 - 9930. Available from: http://www.pnas.org/content/early/2008/07/11/0709884105.abstract

http://www.eurekalert.org/pub_releases/2008-07/jhu-etg071008.php

Full text available at http://www.pnas.org/content/105/29/9926.abstract?sid=c01302b6-cd8e-4072-842c-7c6fcd40706f

Brain-training to improve working memory boosts fluid intelligence

General intelligence is often separated into "fluid" and "crystalline" components, of which fluid intelligence is considered more reflective of “pure” intelligence (for more on this, see my article at http://www.memory-key.com//memory/individual/wm-intelligence), and largely resistant to training and learning effects. However, in a new study in which participants were given a series of training exercises designed to improve their working memory, fluid intelligence was found to have significantly improved, with the amount of improvement increasing with time spent training. The small study contradicts decades of research showing that improving on one kind of cognitive task does not improve performance on other kinds, so has been regarded with some skepticism by other researchers. More research is definitely needed, but the memory task did differ from previous studies, engaging executive functions such as those that inhibit irrelevant items, monitor performance, manage two tasks simultaneously, and update memory.

[1183] Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. From the Cover: Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences [Internet]. 2008 ;105(19):6829 - 6833. Available from: http://www.pnas.org/content/early/2008/04/25/0801268105.abstract

http://www.physorg.com/news128699895.html
http://www.sciam.com/article.cfm?id=study-shows-brain-power-can-be-bolstered

Teaching older brains to regain youthful skills

Researchers have succeeded in training seniors to multitask at the same level as younger adults. Over the course of two weeks, both younger and older subjects learned to identify a letter flashed quickly in the middle of a computer screen and simultaneously localize the position of a spot flashed quickly in the periphery as well as they could perform either task on its own. The older adults did take longer than the younger adults to reach the same level of performance, but they did reach it.

[571] Richards E, Bennett PJ, Sekuler AB. Age related differences in learning with the useful field of view. Vision Research [Internet]. 2006 ;46(25):4217 - 4231. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17027061

http://www.eurekalert.org/pub_releases/2006-10/mu-yct100206.php

Novelty aids learning

We’ve long suspected that the human brain is particularly attracted to new information. Research now reveals that the brain region that regulates our levels of motivation and our ability to predict rewards, by releasing dopamine in the frontal and temporal regions of the brain, responds better to novelty than to the familiar. Behavioral experiments also revealed that participants best remembered the images they had been shown when new images were mixed in with slightly familiar images during learning. It’s worth noting that this midbrain area (substantia nigra/ventral tegmentum) responded strongly only to completely new stimuli.

[1113] Bunzeck N, Duzel E. Absolute Coding of Stimulus Novelty in the Human Substantia Nigra/VTA. Neuron [Internet]. 2006 ;51(3):369 - 379. Available from: http://www.cell.com/neuron/abstract/S0896-6273(06)00475-2

http://www.eurekalert.org/pub_releases/2006-08/ucl-nal073106.php

Support for labeling as an aid to memory

A study involving an amnesia-inducing drug has shed light on how we form new memories. Participants in the study participants viewed words, photographs of faces and landscapes, and abstract pictures one at a time on a computer screen. Twenty minutes later, they were shown the words and images again, one at a time. Half of the images they had seen earlier, and half were new. They were then asked whether they recognized each one. For one session they were given midazolam, a drug used to relieve anxiety during surgical procedures that also causes short-term anterograde amnesia, and for one session they were given a placebo.
It was found that the participants' memory while in the placebo condition was best for words, but the worst for abstract images. Midazolam impaired the recognition of words the most, impaired memory for the photos less, and impaired recognition of abstract pictures hardly at all. The finding reinforces the idea that the ability to recollect depends on the ability to link the stimulus to a context, and that unitization increases the chances of this linking occurring. While the words were very concrete and therefore easy to link to the experimental context, the photographs were of unknown people and unknown places and thus hard to distinctively label. The abstract images were also unfamiliar and not unitized into something that could be described with a single word.

[1216] Reder LM, Oates JM, Thornton ER, Quinlan JJ, Kaufer A, Sauer J. Drug-Induced Amnesia Hurts Recognition, but Only for Memories That Can Be Unitized. Psychological science : a journal of the American Psychological Society / APS. 2006 ;17(7):562 - 567.

http://www.sciencedaily.com/releases/2006/07/060719092800.htm

Language cues help visual learning in children

A study of 4-year-old children has found that language, in the form of specific kinds of sentences spoken aloud, helped them remember mirror image visual patterns. The children were shown cards bearing red and green vertical, horizontal and diagonal patterns that were mirror images of one another. When asked to choose the card that matched the one previously seen, the children tended to mistake the original card for its mirror image, showing how difficult it was for them to remember both color and location. However, if they were told, when viewing the original card, a mnemonic cue such as ‘The red part is on the left’, they performed “reliably better”.

The paper was presented by a graduate student at the 17th annual meeting of the American Psychological Society, held May 26-29 in Los Angeles.

http://www.eurekalert.org/pub_releases/2005-05/jhu-lc051705.php

Cognitive therapy for ADHD

A researcher that has previously demonstrated that working memory capacity can be increased through training, has now reported that the training software has produced significant improvement in children with ADHD — a disability that is associated with deficits in working memory. The study involved 53 children with ADHD, aged 7-12, who were not on medication for their disability. 44 of these met the criterion of more than 20 days of training. Half the participants were assigned to the working memory training program and the other half to a comparison program. 60% of those who underwent the wm training program no longer met the clinical criteria for ADHD after five weeks of training. The children were tested on visual-spatial memory, which has the strongest link to inattention and ADHD. Further research is needed to show that training improves ability on a wider range of tasks.

[583] Klingberg T, Fernell E, Olesen PJ, Johnson M, Gustafsson P, Dahlström K, Gillberg CG, Forssberg H, Westerberg H. Computerized Training of Working Memory in Children With ADHD-A Randomized, Controlled Trial. Journal of the American Academy of Child & Adolescent Psychiatry [Internet]. 2005 ;44(2):177 - 186. Available from: http://www.sciencedirect.com/science/article/B987N-4XKH91F-B/2/44e91ac6d66cbd1822ee93ad0b14ec59

http://www.sciam.com/article.cfm?articleID=000560D5-7252-12B9-9A2C83414B7F0000&sc=I100322

Training improves working memory capacity

Working memory capacity has traditionally been thought to be constant. Recent studies, however, suggest that working memory can be improved by training. In this recent imaging study, it was found that adults who practiced working memory tasks for 5 weeks showed increased brain activity in the middle frontal gyrus and superior and inferior parietal cortices. These changes could be evidence of training-induced plasticity in the neural systems that underlie working memory.

[606] Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci [Internet]. 2004 ;7(1):75 - 79. Available from: http://dx.doi.org/10.1038/nn1165

http://www.nature.com/cgi-taf/DynaPage.taf?file=/neuro/journal/v7/n1/abs/nn1165.html

Children who concentrate and switch attention better are more likely to cross streets safely

How can we help kids cross streets more safely? Improving their abilities to concentrate and switch their attention may be part of the answer. British psychologists studied these two central attentional skills in children ages four to 10 in relation to how safely they crossed the street. The results suggest that children who can concentrate and switch their attention better may cross more safely. The study used a computer game to gauge the “attention switching” skills of 101 children. Distractability and impulsivity were also measured, in a representative sample of 35 children. These 35 children were then covertly videotaped crossing streets (with their parents). Attentional skills significantly correlated with pedestrian behavior, in different ways. Children who were better at switching attention on the Frog Game were more likely to look at traffic when about to cross a road. Children who were less able to concentrate in the lab when challenged by a distraction also tended to be more impulsive; children rated as more impulsive tended to cross the road in a less controlled way. The biggest improvements seemed to come between the group of four-five year olds and the group of five-six year olds, the difference between preschool and kindergarten age. Finally, concentration, but not switching, correlated with impulsivity, suggesting that these two skills (concentration and attention switching) represent distinct aspects of attention.

[385] Dunbar G, Hill R, Lewis V. Children's attentional skills and road behavior. Journal of Experimental Psychology. Applied [Internet]. 2001 ;7(3):227 - 234. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11676101

http://www.eurekalert.org/pub_releases/2001-09/apa-cwc091001.php

Skill-specific exercises better for people who suffer from attention problems following stroke or brain injury

Treatment programs for people who suffer from attention problems following a stroke or other traumatic brain injuries often involve abstract cognitive exercises designed to directly restore impaired attention processes. But a review of 30 studies involving a total of 359 participants shows that an alternative and lesser-used therapy that teaches patients to relearn the tasks that affect their daily lives the most may be more effective. In this specific skills approach, people with brain damage learn to perform attention skills in a way that is different from non-brain-damaged people. In one study, for example, participants whose brain injuries affected their ability to drive a car used small electric cars in the lab to practice specific driving exercises, such as steering between pylons that were moved closer and closer together. Those that practiced specific exercises showed substantial improvement on a variety of driving related tasks compared to those who drove the car, but did not practice the exercises.

[2548] Park NW, Ingles JL. Effectiveness of attention rehabilitation after an acquired brain injury: A meta-analysis. Neuropsychology [Internet]. 2001 ;15(2):199 - 210. Available from: http://psycnet.apa.org/journals/neu/15/2/199/

http://www.eurekalert.org/pub_releases/2001-04/APA-Rlsm-0704101.php

tags memworks: 

tags strategies: 

Learning Facebook may keep seniors sharp

Preliminary findings from a small study show that older adults, after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their

03/2013

Mynd: 

tags memworks: 

tags problems: 

tags strategies: 

tags development: 

Intensive training helps seniors with long-term aphasia

February, 2013

A six-week specific language therapy program not only improved chronic aphasic’s ability to name objects, but produced durable changes in brain activity that continued to bring benefits post-training.

Here’s an encouraging study for all those who think that, because of age or physical damage, they must resign themselves to whatever cognitive impairment or decline they have suffered. In this study, older adults who had suffered from aphasia for a long time nevertheless improved their language function after six weeks of intensive training.

The study involved nine seniors with chronic aphasia and 10 age-matched controls. Those with aphasia were given six weeks of intensive and specific language therapy, after which they showed significantly better performance at naming objects. Brain scans revealed that the training had not only stimulated language circuits, but also integrated the default mode network (the circuits used when our brain is in its ‘resting state’ — i.e., not thinking about anything in particular), producing brain activity that was similar to that of the healthy controls.

Moreover, these new circuits continued to be active after training, with participants continuing to improve.

Previous research has implicated abnormal functioning of the default mode network in other cognitive disorders.

Although it didn’t reach significance, there was a trend suggesting that the level of integration of the default mode network prior to therapy predicted the outcome of the training.

The findings are especially relevant to the many seniors who no longer receive treatment for stroke damage they may have had for many years. They also add to the growing evidence for the importance of the default mode network. Changes in the integration of the default mode network with other circuits have also been implicated in age-related cognitive decline and Alzheimer’s.

Interestingly, some research suggests that meditation may help improve the coherence of brainwaves that overlap the default mode network. Meditation, already shown to be helpful for improving concentration and focus, may be of greater benefit for fighting age-related cognitive decline than we realize!

Reference: 

Source: 

tags memworks: 

Topics: 

tags problems: 

tags strategies: 

tags development: 

Brain training helps cognitive decline in many cancer survivors

November, 2012

A pilot study found that both training in memory strategies and processing speed training had significant benefits for breast cancer survivors with concerns about their memory and cognition.

Cancer survivors who underwent chemotherapy often suffer long-term cognitive problems. Until now, most research has been occupied with establishing that this is in fact the case, and studies investigating how to help have been rare. I recently reported on studies suggesting that help with sleep problems and stress can be beneficial. It has also been suggested that exercise can help. None of these suggestions are special to cancer survivors (although cancer survivors may well be one of several groups that derive particular benefit). Similarly, a new study investigates another familiar approach to improving cognitive decline.

The pilot study involved 82 post-menopausal breast cancer survivors (average age 56) who had received chemotherapy and who were worried about their cognitive abilities. The women were randomly assigned to one of three groups: one group received memory training adapted from the ACTIVE (Advanced Cognitive Training for Independent and Vital Elderly) trial; another received processing speed training using Posit Science’s Insight program (commercially available); the third was a wait-listed control group.

Training consisted of ten 1-hour small-group (3-5 people) sessions over 6-8 weeks. Memory training involved learning strategies and applying them to word lists, sequences, and texts. Strategies included mnemonic techniques, as well as instruction in principles of meaningfulness, organization, visualization, and association. Strategies were taught and practiced in the first five sessions, and further practiced in the remaining sessions.

In the Insight program, stimulus duration is progressively shortened during a series of progressively more difficult information-processing tasks, such as time-order judgment, discrimination, spatial-match, forward-span, instruction-following, and narrative-memory tasks. Exercises automatically adjust to maintain an 85% correct rate.

Both programs proved beneficial. The memory training group showed significant improvement in immediate and delayed memory, which was maintained at the two-month follow-up. There was of course individual variability: 39% showed significant improvement on immediate memory (compared to 18% of controls) and 42% on delayed memory (compared to 11% of controls). While the group as a whole didn’t show significant improvement in processing speed, some 73% of the group showed reliable improvement at the two-month follow-up.

The Insight group showed significant improvement on both memory and processing speed. Some 68% improved processing speed (compared to 43% of controls). But note that at the 2-month follow-up, the 67% of the Insight group is not that much greater than the 61% of the controls (demonstrating very clearly the benefits of even the small amount of practice received in testing) and is in fact less than the 73% of the memory group.

The Insight group also showed significant improvement in memory. At two-month follow-up, some 30% of the Insight group had improved immediate memory (compared to the 18% of controls), and 33% had improved delayed memory (vs 11%).

Both training programs had a positive effect on perceived cognitive functioning and symptom distress (mood, anxiety, fatigue), and there was no difference between the groups in terms of satisfaction with the training (both groups were very satisfied).

The researchers concluded that, while both training programs were promising, the dual effect of processing speed training (on memory as well as processing speed) argued for its broader benefits.

However, I note that, although the size of the effect of memory training on processing speed was too small to reach statistical significance, the fact that the number of participants showing reliable improvement was greater than that of the Insight group points to an equally broad effect of memory training. If the memory training was supplemented by a small amount of practice on tasks designed to boost processing speed, it would seem to me that this might produce greater cognitive benefits than the processing speed training. Indeed, the Insight program was, I believe, first developed in the context of the ACTIVE program, and I have, of course, talked before about the value of training that includes multiple domains.

Still, the main message of this study should not be overlooked: it demonstrates that many cancer survivors suffering from cognitive decline can improve their cognitive performance through training and practice.

Reference: 

Source: 

Topics: 

tags problems: 

tags strategies: 

tags development: 

tags lifestyle: 

tags memworks: 

Improving memory for specific events can help depression

November, 2012

A small study suggests that training in recalling personal memories can significantly help those with depression.

We know that people with depression tend to focus on, and remember, negative memories rather than positive. Interestingly, it’s not simply an emotion effect. People with depression, and even those at risk of depression (including those who have had depression), tend to have trouble remembering specific autobiographical memories. That is, memories of events that happened to them at a specific place and time (as opposed to those generalized event memories we construct from similar events, such as the ‘going to the dentist’ memory).

This cognitive difficulty seems to exacerbate their depression, probably through its effect on social encounters and relationships.

A new study, however, has found that a particular training program (“Memory Specificity Training”) can help both their memory for specific events and their symptoms of depression.

The study involved 23 adolescent Afghani refugees in Iran, all of whom had lost their fathers in the war in Afghanistan and who showed symptoms of depression. Half were randomly assigned to the five-week memory training program and half received no training.

The training program involved a weekly 80-minute group session, in which participants learned about different types of memory and memory recall, and practiced recalling specific memories after being given positive, neutral, and negative keywords.

Participants’ memory for specific events was tested at the start of the study, at the end of the five-week training period, and two months after the end of the training. Compared to the control group, those given the training were able to provide more specific memories after the training, and showed fewer symptoms of depression at the two month follow-up (but not immediately after the end of training).

The study follows on from a pilot study in which ten depressed female patients were given four weekly one-hour sessions of memory training. Improvements in memory retrieval were associated with less rumination (dwelling on things), less cognitive avoidance, and improvements in problem-solving skills.

It’s somewhat unfortunate that the control group were given no group sessions, indeed no contact (apart from the tests) of any kind. Nevertheless, and bearing in mind that these are still very small studies, the findings do suggest that it would be helpful to include a component on memory training in any cognitive behavioral therapy for depression.

Reference: 

Source: 

tags memworks: 

Topics: 

tags strategies: 

tags problems: 

Pages

Subscribe to RSS - training