retrieval

Gist memory may be why false memories are more common in older adults

  • Gist processing appears to play a strong role in false memories.
  • Older adults rely on gist memory more.
  • Older adults find it harder to recall specific sensory details that would help confirm whether a memory is true.

Do older adults forget as much as they think, or is it rather that they ‘misremember’?

A small study adds to evidence that gist memory plays an important role in false memories at any age, but older adults are more susceptible to misremembering because of their greater use of gist memory.

Gist memory is about remembering the broad story, not the details. We use schemas a lot. Schemas are concepts we build over time for events and experiences, in order to relieve the cognitive load. They allow us to respond and process faster. We build schemas for such things as going to the dentist, going to a restaurant, attending a lecture, and so on. Schemas are very useful, reminding us what to expect and what to do in situations we have experienced before. But they are also responsible for errors of perception and memory — we see and remember what we expect to see.

As we get older, we do of course build up more and firmer schemas, making it harder to really see with fresh eyes. Which means it’s harder for us to notice the details, and easier for us to misremember what we saw.

A small study involving 20 older adults (mean age 75) had participants look at 26 different pictures of common scenes (such as a farmyard, a bathroom) for about 10 seconds, and asked them to remember as much as they could about the scenes. Later, they were shown 300 pictures of objects that were either in the scene, related to the scene (but not actually in the scene), or not commonly associated to the scene, and were required to say whether or not the objects were in the picture. Brain activity was monitored during these tests. Performance was also compared with that produced in a previous identical study, involving 22 young adults (mean age 23).

As expected and as is typical, there was a higher hit rate for schematic items and a higher rate of false memories for schematically related lures (items that belong to the schema but didn’t appear in the picture). True memories activated the typical retrieval network (medial prefrontal cortex, hippocampus/parahippocampal gyrus, inferior parietal lobe, right middle temporal gyrus, and left fusiform gyrus).

Activity in some of these regions (frontal-parietal regions, left hippocampus, right MTG, and left fusiform) distinguished hits from false alarms, supporting the idea that it’s more demanding to retrieve true memories than illusory ones. This contrasts with younger adults who in this and previous research have displayed the opposite pattern. The finding is consistent, however, with the theory that older adults tend to engage frontal resources at an earlier level of difficulty.

Older adults also displayed greater activation in the medial prefrontal cortex for both schematic and non-schematic hits than young adults did.

While true memories activated the typical retrieval network, and there were different patterns of activity for schematic vs non-schematic hits, there was no distinctive pattern of activity for retrieving false memories. However, there was increased activity in the middle frontal gyrus, middle temporal gyrus, and hippocampus/parahippocampal gyrus as a function of the rate of false memories.

Imaging also revealed that, like younger adults, older adults also engage the ventromedial prefrontal cortex when retrieving schematic information, and that they do so to a greater extent. Activation patterns also support the role of the mediotemporal lobe (MTL), and the posterior hippocampus/parahippocampal gyrus in particular, in determining true memories from false. Note that schematic information is not part of this region’s concern, and there was no consistent difference in activation in this region for schematic vs non-schematic hits. But older adults showed this shift within the hippocampus, with much of the activity moving to a more posterior region.

Sensory details are also important for distinguishing between true and false memories, but, apart from activity in the left fusiform gyrus, older adults — unlike younger adults — did not show any differential activation in the occipital cortex. This finding is consistent with previous research, and supports the conclusion that older adults don’t experience the recapitulation of sensory details in the same way that younger adults do. This, of course, adds to the difficulty they have in distinguishing true and false memories.

Older adults also showed differential activation of the right MTG, involved in gist processing, for true memories. Again, this is not found in younger adults, and supports the idea that older adults depend more on schematic gist information to assess whether a memory is true.

However, in older adults, increased activation of both the MTL and the MTG is seen as rates of false alarms increase, indicating that both gist and episodic memory contribute to their false memories. This is also in line with previous research, suggesting that memories of specific events and details can (incorrectly) provide support for false memories that are consistent with such events.

Older adults, unlike young adults, failed to show differential activity in the retrieval network for targets and lures (items that fit in with the schema, but were not in fact present in the image).

What does all this mean? Here’s what’s important:

  • older adults tend to use schema information more when trying to remember
  • older adults find it harder to recall specific sensory details that would help confirm a memory’s veracity
  • at all ages, gist processing appears to play a strong role in false memories
  • memory of specific (true) details can be used to endorse related (but false) details.

What can you do about any of this? One approach would be to make an effort to recall specific sensory details of an event rather than relying on the easier generic event that comes to mind first. So, for example, if you’re asked to go to the store to pick up orange juice, tomatoes and muesli, you might end up with more familiar items — a sort of default position, as it were, because you can’t quite remember what you were asked. If you make an effort to remember the occasion of being told — where you were, how the other person looked, what time of day it was, other things you talked about, etc — you might be able to bring the actual items to mind. A lot of the time, we simply don’t make the effort, because we don’t think we can remember.

https://www.eurekalert.org/pub_releases/2018-03/ps-fdg032118.php

Reference: 

Topics: 

tags problems: 

tags development: 

tags memworks: 

Eye movements get re-enacted when we remember

  • An imaging and eye-tracking study has shown that the brain uses eye movements to help us recall remembered images.

A small study has tested the eminent Donald Hebb’s hypothesis that visual imagery results from the reactivation of neural activity associated with viewing images, and that the re-enactment of eye-movement patterns helps both imagery and neural reactivation.

In the study, 16 young adults (aged 20-28) were shown a set of 14 distinct images for a few seconds each. They were asked to remember as many details of the picture as possible so they could visualize it later on. They were then cued to mentally visualize the images within an empty rectangular box shown on the screen.

Brain imaging and eye-tracking technology revealed that the same pattern of eye movements and brain activation occurred when the image was learned and when it was recalled. During recall, however, the patterns were compressed (which is consistent with our experience of remembering, where memories take a much shorter time than the original experiences).

Our understanding of memory is that it’s constructive — when we remember, we reconstruct the memory from separate bits of information in our database. This finding suggests that eye movements might be like a blueprint to help the brain piece together the bits in the right way.

https://www.eurekalert.org/pub_releases/2018-02/bcfg-cga021318.php

Reference: 

tags memworks: 

Topics: 

Tell a friend what you learned

  • A single instance of retrieval, right after learning, is enough to significantly improve your memory, and stop the usual steep forgetting curve for non-core information.

A study involving 60 undergraduate students confirms the value of even a single instance of retrieval practice in an everyday setting, and also confirms the value of cues for peripheral details, which are forgotten more readily.

In three experiments involving 20 undergraduate students, students were shown foreign or otherwise obscure movie clips that contained scenes of normal everyday events. The 24-second clips from 40 films were shown over a period of about half an hour. After a delay of either several minutes, three days, or seven days, the students were questioned on their memory of the general plot, as well as details such as sounds, colors, gestures, and background details that allow a person to re-experience an event in rich and vivid detail.

In the second experiment, students were given a brief visual cue, such as a simple glimpse of the title and a sliver of a screenshot, on testing. In the third experiment, students recalled the information soon after viewing, in addition to the later test.

Researcher found:

  • Peripheral details were, unsurprisingly, forgotten more quickly, and to a greater degree.
  • But those given cues did better at remembering peripheral details.
  • Cues didn’t significantly affect the memory of more substantial matters.
  • Those who retrieved their memories soon after viewing showed no forgetting of peripheral information.
  • Interestingly, these students still assumed they had forgotten a lot (confirming once again, that we're not great at judging our own memory)!

The finding confirms the value of even a single instance of retrieval practice, even without any delay. Note that memory was tested after a week. For longer recall, additional retrieval practice is likely to be needed — but it's probably fair to say that it's that first instance of retrieval that has the biggest effect. I discuss all this in much greater detail in my book on practice.

It's also worth thinking about this in conjunction with the earlier report that there's a special benefit in recounting the information to another person.

https://www.eurekalert.org/pub_releases/2017-01/bu-wta011717.php

Reference: 

Source: 

tags memworks: 

tags study: 

Topics: 

tags strategies: 

Retrieval

Older news items (pre-2010) brought over from the old website

The importance of retrieval cues

An imaging study has revealed that it is retrieval cues that trigger activity in the hippocampus, rather than, as often argued, the strength of the memory. The study involved participants learning unrelated word pairs (a process which included making up sentences with the words), then being asked whether various familiar words had been previously seen or not — the words being shown first on their own, and then with their paired cue word. Brain activity for words judged familiar on their own was compared with activity for the same items when shown with context cues. Increased hippocampal activity occurred only with cued recall. Moreover, the amount of activity was not associated with familiarity strength, and recollected items were associated with greater activity relative to highly familiar items.

Cohn, M., Moscovitch, M., Lahat, A., & McAndrews, M. P. (2009). Recollection versus strength as the primary determinant of hippocampal engagement at retrieval. Proceedings of the National Academy of Sciences, 106(52), 22451-22455.

http://www.eurekalert.org/pub_releases/2009-12/uot-dik120709.php

New insights into memory without conscious awareness

An imaging study in which participants were shown a previously studied scene along with three previously studied faces and asked to identify the face that had been paired with that scene earlier has found that hippocampal activity was closely tied to participants' tendency to view the associated face, even when they failed to identify it. Activity in the lateral prefrontal cortex, an area required for decision making, was sensitive to whether or not participants had responded correctly and communication between the prefrontal cortex and the hippocampus was increased during correct, but not incorrect, trials. The findings suggest that conscious memory may depend on interactions between the hippocampus and the prefrontal cortex.

Hannula, D.E. & Ranganath, C. 2009. The Eyes Have It: Hippocampal Activity Predicts Expression of Memory in Eye Movements. Neuron, 63 (5), 592-599.

http://www.eurekalert.org/pub_releases/2009-09/cp-ycb090309.php
http://sciencenow.sciencemag.org/cgi/content/full/2009/910/4?etoc

Brain activity linked to anticipation revealed

Brain scans of students listening to their favorite music CDs has revealed plenty of neural activity during the silence between songs — activity that is absent in those listening to music they had never heard in sequence before. Such anticipatory activity probably occurs whenever we expect any particular action to happen. In this case, the activity took the form of excitatory signals passing from the prefrontal cortex (where planning takes place) to the nearby premotor cortex (which is involved in preparing the body to act).

Leaver, A.M. et al. 2009. Brain Activation during Anticipation of Sound Sequences. Journal of Neuroscience, 29, 2477-2485.

http://www.eurekalert.org/pub_releases/2009-02/gumc-rcw022509.php

How we think before we speak: Making sense of sentences

Analysis of the changes in brain activity that occurred when volunteers heard or read critical sentences as part of a longer text or placed in some other type of context, has revealed how anticipatory and contextual our comprehension is. The brain relates unfolding sentences to earlier ones astonishingly quickly (brain effects usually occur before a word is even finished being spoken), and findings indicate that it does this by trying to predict upcoming information. In addition to the words themselves, the person speaking them is a crucial component in understanding what is being said. The study found brain effects occurring very rapidly when the content of a statement being spoken did not match with the voice of the speaker (e.g. "I have a large tattoo on my back" in an upper-class accent or "I like olives" in a young child's voice). It also appears that grammar is less important than various heuristics that help you arrive at the earliest possible interpretation. Speed is more important than accuracy. “Language comprehension is opportunistic, proactive, and, above all, immediately context-dependent.”

Berkum, J.J.A. 2008. Understanding Sentences in Context: What Brain Waves Can Tell Us. Current Directions in Psychological Science, 17 (6), 376-380.

http://www.physorg.com/news154349880.html

Gut feelings may actually reflect a reliable memory

Recently, there has been increased interest in the power of implicit, or unconscious, memory. In the latest study, participants were briefly shown a series of colorful kaleidoscope images and asked to memorise them. Half the time, they simultaneously heard a spoken single-digit number, which they had to keep in mind until the next trial, when they indicated whether it was odd or even. On every trial they had to listen to a new number and press a button to complete the number task. They were tested a short time after the learning period by having to recognize the images they had seen earlier, from pairs of similar kaleidoscope images. It was found that people were more accurate in selecting the old image when they had been distracted than when they had paid full attention, and were also more accurate when they claimed to be guessing than when they thought an image was familiar. During implicit recognition took place, a different pattern of brain activity was observed than that seen with conscious memory experiences, specifically, frontal-occipital negative brain potentials 200–400 ms after participants saw the old image.

Voss, J.L. & Paller, K.A 2009. An electrophysiological signature of unconscious recognition memory. Nature Neuroscience, 12, 349–355.

http://www.eurekalert.org/pub_releases/2009-02/nu-tgf020509.php

Searching in space is like searching your mind

A study of search modes in both spatial and abstract settings has found evidence that how we look for things, such as our car keys or umbrella, could be related to how we search for more abstract needs, such as words in memory or solutions to problems. The studies compared two search modes: exploitation, where seekers stay with a place or task until they have gotten appreciable benefit from it, and exploration, where seekers move quickly from one place or one task to another, looking for a new set of resources to exploit. In the study, participants "foraged" in a computerized world, moving around until they stumbled upon a hidden supply of resources, then deciding if and when to move on, and in which direction. The scientists tracked their movements. Two different worlds ("clumpy", with fewer but richer resources, and "diffuse", with many more, but much smaller, supplies) encouraged one mode or other. The idea was to "prime" the optimal foraging strategy for each world. The volunteers then participated in a more abstract, intellectual search task -- a computerized game akin to Scrabble. It was found that although the human brain appears capable of using exploration or exploitation search modes depending on the demands of the task, it also has a tendency through "priming" to continue searching in the same way even if in a different domain, such as when switching from a spatial to an abstract task. Moreover, people who have a tendency to use one mode more in one task have a similar tendency to use that mode more in other tasks. The findings also support the view that goal-directed cognition is an evolutionary descendant of spatial-foraging behavior.

Hills, T.T., Todd, P.M. & Goldstone, R.L. 2008. Search in External and Internal Spaces: Evidence for Generalized Cognitive Search Processes. Psychological Science, 19 (8), 802-808.

http://www.eurekalert.org/pub_releases/2008-09/iu-sis090908.php

More light shed on memory retrieval

A new technique has confirmed the idea that when we retrieve memories we try to reinstate our original mindset, when we formed the memory. As you search for memories of a particular event, your brain state progressively comes to resemble the state it was in when you initially experienced the event, as one memory triggers another. They also found patterns of brain activity for specific categories, such as faces, started to emerge approximately five seconds before subjects recalled items from that category — suggesting that participants were bringing to mind the general properties of the images in order to cue for specific details. The technique also enabled researchers to predict with reasonable accuracy what items participants would successfully recall.

Polyn, S.M., Natu, V.S., Cohen, J.D. & Norman, K.A. 2005. Category-Specific Cortical Activity Precedes Retrieval During Memory Search. Science, 310 (5756), 1963–1966.

http://www.eurekalert.org/pub_releases/2005-12/pu-rdn122205.php
http://www.eurekalert.org/pub_releases/2005-12/uop-rkw121905.php

Role of hippocampus in long term memory

The role of the hippocampus in the formation of new memories has been well-documented, and we know that the hippocampus is involved in transferring immediate or short-term memories into long-term memories. However, its specific contribution to the representation of very well-learned information is not well understood. Now a study has recorded the activity of individual hippocampal neurons as monkeys retrieved information from memory, demonstrating significantly different response when the stimuli were well-learned, compared to novel stimuli. This differentiated response in the hippocampus provides strong evidence for a memory signal specific for well-learned information, and suggests a way for well-learned information to be incorporated into everyday memories.

Yanike, M., Wirth, S. & Suzuki, W.A. 2004. Representation of Well-Learned Information in the Monkey Hippocampus. Neuron, 42 (3), 477-487.

http://www.eurekalert.org/pub_releases/2004-05/nyu-ssh051204.php

How we retrieve distant memories

We know that recent memories are stored in the hippocampus, but these memories do not remain there forever. It has been less clear how we retrieve much older memories. Now studies of mice genetically altered to be unable to recall old memories have demonstrated that a part of the cortex called the anterior cingulate is critical for this process. It is suggested that, rather than this structure being the storage site for old memories, the anterior cingulate assembles signals of an old memory from different sites in the brain. Dementia may result from a malfunction in this assembling process, leaving the memory too fragmented to make proper sense. Both ageing and certain aspects of Alzheimer's disease and other dementias are all accompanied by reduced activity in the anterior cingulate.

Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L. & Silva, A.J. 2004. The Involvement of the Anterior Cingulate Cortex in Remote Contextual Fear Memory. Science, 304, 881-883.

http://news.bbc.co.uk/2/hi/health/3689335.stm

Norepinephrine important in retrieving memories

In the first description of a molecule implicated in recalling memories as opposed to laying down new memories, researchers have found that the neurotransmitter norepinephrine is essential in retrieving certain types of memories. The studies involved mutant mice lacking norepinephrine and rats treated with drugs that block some norepinephrine receptors (beta blockers). The results run counter to currently held hypotheses that suggest that stress hormones like norepinephrine are responsible for the formation of long-term consolidation of emotional memories, instead finding that norepinephrine was critical for retrieving intermediate-term contextual and spatial memories. The research may help us better understand post-traumatic stress disorder (PTSD) and depression, both of which involve alterations in memory retrieval in different ways.

Murchison, C.F., Zhang, X-Y., Zhang, W-P., Ouyang, M., Lee, A. & Thomas, S.A. 2004. A Distinct Role for Norepinephrine in Memory Retrieval. Cell, 117 (1), 131-143.

http://www.eurekalert.org/pub_releases/2004-04/uopm-nii033104.php

tags memworks: 

Distinguishing normal cognitive decline from more serious disorders

Data from two longitudinal studies of older adults (a nationally representative sample of older adults, and the Alzheimer’s Disease Neuroimaging Initiative) has found that a brief cognitive test can distinguish memory decline associated with healthy aging from more serious memory disorders, years before obvious symptoms show up.

Moreover, the data challenge the idea that memory continues to decline through old age: after excluding the cognitively impaired, there was no evidence of further memory declines after the age of 69.

Mynd: 

tags memworks: 

tags problems: 

tags development: 

Forgetfulness in old age may be related to changes in retrieval strategy

April, 2013

A study of younger and older adults indicates that memory search tends to decline with age because, with reduced cognitive control, seniors’ minds tend to ‘flit’ too quickly from one information cluster to another.

Evidence is accumulating that age-related cognitive decline is rooted in three related factors: processing speed slows down (because of myelin degradation); the ability to inhibit distractions becomes impaired; working memory capacity is reduced.

A new study adds to this evidence by looking at one particular aspect of age-related cognitive decline: memory search.

The study put 185 adults aged 29-99 (average age 67) through three cognitive tests: a vocabulary test, digit span (a working memory test), and the animal fluency test, in which you name as many animals as you can in one minute.

Typically, in the animal fluency test, people move through semantic categories such as ‘pets’, ‘big cats’, and so on. The best performers are those who move from category to category with optimal timing — i.e., at the point where the category has been sufficiently exhausted that efforts would be better spent on a new one.

Participants recalled on average 17 animal names, with a range from 5 to 33. While there was a decline with age, it wasn’t particularly marked until the 80s (an average of 18.3 for those in their 30s, 17.5 for those in their 60s, 16.5 for the 70s, 12.8 for the 80s, and 10 for the 90s). Digit span did show a decline, but it was not significant (from 17.5 down to 15.3), while vocabulary (consistent with previous research) showed no decline with age.

But all this is by the by — the nub of the experiment was to discover how individuals were searching their memory. This required a quite complicated analysis, which I will not go into, except to mention two important distinctions. The first is between:

  • global context cue: activates each item in the active category according to how strong it is (how frequently it has been recalled in the past);
  • local context cue: activates each item in relation to its semantic similarity to the previous item recalled.

A further distinction was made between static and dynamic processes: in dynamic models, it is assumed the user switches between local and global search. This, it is further assumed, is because memory is ‘patchy’ – that is, information is represented in clusters. Within a cluster, we use local cues, but to move from one cluster to another, we use global cues.

The point of all this was to determine whether age-related decline in memory search has to do with:

  • Reduced processing speed,
  • Persisting too long on categories, or
  • Inability to maintain focus on local cues (this would relate it back to the inhibition deficit).

By modeling the exact recall patterns, the researchers ascertained that the recall process is indeed dynamic, although the points of transition are not clearly understood. The number of transitions from one cluster to another was negatively correlated with age; it was also strongly positively correlated with performance (number of items recalled). Digit span, assumed to measure ‘cognitive control’, was also negatively correlated with number of transitions, but, as I said, was not significantly correlated with age.

In other words, it appears that there is a qualitative change with age, that increasing age is correlated with increased switching, and reduced cognitive control is behind this — although it doesn’t explain it all (perhaps because we’re still not able to fully measure cognitive control).

At a practical level, the message is that memory search may become less efficient because, as people age, they tend to change categories too frequently, before they have exhausted their full potential. While this may well be a consequence of reduced cognitive control, it seems likely (to me at least) that making a deliberate effort to fight the tendency to move on too quickly will pay dividends for older adults who want to improve their memory retrieval abilities.

Nor is this restricted to older adults — since age appears to be primarily affecting performance through its effects on cognitive control, it is likely that this applies to those with reduced working memory capacity, of any age.

Reference: 

[3378] Hills TT, Mata R, Wilke A, Samanez-Larkin GR. Mechanisms of Age-Related Decline in Memory Search Across the Adult Life Span. Developmental Psychology. 2013 :No - Pagination Specified.

Source: 

tags development: 

Topics: 

tags problems: 

tags memworks: 

Improving memory for specific events can help depression

November, 2012

A small study suggests that training in recalling personal memories can significantly help those with depression.

We know that people with depression tend to focus on, and remember, negative memories rather than positive. Interestingly, it’s not simply an emotion effect. People with depression, and even those at risk of depression (including those who have had depression), tend to have trouble remembering specific autobiographical memories. That is, memories of events that happened to them at a specific place and time (as opposed to those generalized event memories we construct from similar events, such as the ‘going to the dentist’ memory).

This cognitive difficulty seems to exacerbate their depression, probably through its effect on social encounters and relationships.

A new study, however, has found that a particular training program (“Memory Specificity Training”) can help both their memory for specific events and their symptoms of depression.

The study involved 23 adolescent Afghani refugees in Iran, all of whom had lost their fathers in the war in Afghanistan and who showed symptoms of depression. Half were randomly assigned to the five-week memory training program and half received no training.

The training program involved a weekly 80-minute group session, in which participants learned about different types of memory and memory recall, and practiced recalling specific memories after being given positive, neutral, and negative keywords.

Participants’ memory for specific events was tested at the start of the study, at the end of the five-week training period, and two months after the end of the training. Compared to the control group, those given the training were able to provide more specific memories after the training, and showed fewer symptoms of depression at the two month follow-up (but not immediately after the end of training).

The study follows on from a pilot study in which ten depressed female patients were given four weekly one-hour sessions of memory training. Improvements in memory retrieval were associated with less rumination (dwelling on things), less cognitive avoidance, and improvements in problem-solving skills.

It’s somewhat unfortunate that the control group were given no group sessions, indeed no contact (apart from the tests) of any kind. Nevertheless, and bearing in mind that these are still very small studies, the findings do suggest that it would be helpful to include a component on memory training in any cognitive behavioral therapy for depression.

Reference: 

Source: 

tags memworks: 

Topics: 

tags strategies: 

tags problems: 

Each memory experience biases how you approach the next one

September, 2012

A new study provides evidence that our decision to encode information as new or try and retrieve it from long-term memory is affected by how we treated the last bit of information processed.

Our life-experiences contain a wealth of new and old information. The relative proportions of these change, of course, as we age. But how do we know whether we should be encoding new information or retrieving old information? It’s easy if the information is readily accessible, but what if it’s not? Bear in mind that (especially as we get older) most information / experiences we meet share some similarity to information we already have.

This question is made even more meaningful when you consider that it is the same brain region — the hippocampus — that’s involved in both encoding and retrieval, and these two processes depend (it is thought) on two quite opposite processes. While encoding is thought to rely on pattern separation (looking for differences), retrieval is thought to depend on pattern completion.

A recent study looked at what happens in the brain when people rapidly switch between encoding new objects and retrieving recently presented ones. Participants were shown 676 pictures of objects and asked to identify each one as being shown for the first time (‘new’), being repeated (‘old’), or as a modified version of something shown earlier (‘similar’). Recognizing the similar items as similar was the question of interest, as these items contain both old and new information and so the brain’s choice between encoding and retrieval is more difficult.

What they found was that participants were more likely to recognize similar items as similar (rather than old) if they had viewed a new item on the preceding trial. In other words, the experience of a new item primed them to notice novelty. Or to put it in another way: context biases the hippocampus toward either pattern completion or pattern separation.

This was supported by a further experiment, in which participants were shown both the object pictures, and also learned associations between faces and scenes. Critically, each scene was associated with two different faces. In the next learning phase, participants were taught a new scene association for one face from each pair. Each face-scene learning trial was preceded by an object recognition trial (new and old objects were shown and participants had to identify them as old or new) — critically, either a new or old object was consistently placed before a specific face-scene association. In the final test phase, participants were tested on the new face-scene associations they had just learned, as well as the indirect associations they had not been taught (that is, between the face of each pair that had not been presented during the preceding phase, and the scene associated with its partnered face).

What this found was that participants were more likely to pair indirectly related faces if those faces had been consistently preceded by old objects, rather than new ones. Moreover, they did so more quickly when the faces had been preceded by old objects rather than new ones.

This was interpreted as indicating that the preceding experience affects how well related information is integrated during encoding.

What all this suggests is that the memory activities you’ve just engaged in bias your brain toward the same sort of activities — so whether or not you notice changes to a café or instead nostalgically recall a previous meal, may depend on whether you noticed anyone you knew as you walked down the street!

An interesting speculation by the researchers is that such a memory bias (which only lasts a very brief time) might be an adaptive mechanism, reflecting the usefulness of being more sensitive to changes in new environments and less sensitive to irregularities in familiar environments.

Reference: 

Source: 

tags memworks: 

Topics: 

Second language processing differs for negative words

June, 2012

A study involving Chinese-English bilinguals shows how words with negative emotional connotations don’t automatically access native translations, while those with positive or neutral emotions do.

Here’s an intriguing study for those interested in how language affects how we think. It’s also of interest to those who speak more than one language or are interested in learning another language, because it deals with the long-debated question as to whether bilinguals working in their non-native language automatically access the native-language representations in long-term memory, or whether they can ‘switch off’ their native language and use only the target language memory codes.

The study follows on from an earlier study by the same researchers that indicated, through the demonstration of hidden priming effects, that bilinguals subconsciously access their first language when reading in their second language. In this new study, 45 university students (15 native English speakers, 15 native Chinese speakers, and 15 Chinese-English bilinguals) were shown two blocks of 90 word pairs. The pairs could have positive emotional value (e.g., honesty-program), negative valence (failure-poet), or neutral valence (aim-carpenter); could be semantically related (virus-bacteria; love-rose) or unrelated (weather-gender). The English or Chinese words were flashed on the screen one at a time, with a brief interval between the first and second word. The students had to indicate whether the second word was related in meaning to the first, and their brain activity was monitored.

The English and Chinese speakers acted as controls — it was the bilinguals, of course, who were the real interest. Some of the English word pairs shared a sound in the Chinese translation. If the Chinese words were automatically activated, therefore, the sound repetition would have a priming effect.

This is indeed what was found (confirming the earlier finding and supporting the idea that native language translations are automatically activated) — but here’s the interesting thing: the priming effect occurred only for positive and neutral words. It did not occur when the bilinguals saw negative words such as war, discomfort, inconvenience, and unfortunate.

The finding, which surprised the researchers, is nonetheless consistent with previous evidence that anger, swearing or discussing intimate feelings has more power in a speaker's native language. Parents, too, tend to speak to their infants in their native tongue. Emotion, it seems, is more strongly linked to our first language.

It’s traditionally thought that second language processing is fundamentally determined by the age of acquisition and the level of proficiency. The differences in emotional resonance have been, naturally enough, attributed to the native language being acquired first. This finding suggests the story is a little more complicated.

The researchers theorize that they have touched on the mechanism by which emotion controls our fundamental thought processes. They suggest that the brain is trying to protect us by minimizing the effect of distressing or disturbing emotional content, by shutting down the unconscious access to the native language (in which the negative words would be more strongly felt).

A few more technical details for those interested:

The Chinese controls demonstrated longer reaction times than the English controls, which suggests (given that 60% of the Chinese word pairs had overt sound repetitions but no semantic relatedness) that this conjunction made the task substantially more difficult. The bilinguals, however, had reaction times comparable to the English controls. The Chinese controls showed no effect of emotional valence, but did show priming effects of the overt sound manipulation that were equal for all emotion conditions.

The native Chinese speakers had recently arrived in Britain to attend an English course. Bilinguals had been exposed to English since the age of 12 and had lived in Britain for an average of 20.5 months.

Reference: 

[2969] Wu YJ, Thierry G. How Reading in a Second Language Protects Your Heart. The Journal of Neuroscience [Internet]. 2012 ;32(19):6485 - 6489. Available from: http://www.jneurosci.org/content/32/19/6485

Source: 

tags memworks: 

tags strategies: 

Topics: 

Menopause ‘brain fog’ a product of poor sleep and depression?

May, 2012

A smallish study of women approaching and in menopause found that some experienced poorer working memory and attention, and these were more likely to have poorer sleep, depression, and anxiety.

A study involving 75 perimenopausal women aged 40 to 60 has found that those with memory complaints tended to show impairments in working memory and attention. Complaints were not, however, associated with verbal learning or memory.

Complaints were also associated with depression, anxiety, somatic complaints, and sleep disturbance. But they weren’t linked to hormone levels (although estrogen is an important hormone for learning and memory).

What this suggests to me is that a primary cause of these cognitive impairments may be poor sleep, and anxiety/depression. A few years ago, I reported on a study that found that, although women’s reports of how many hot flashes they had didn’t correlate with memory impairment, an objective measure of the number of flashes they experienced during sleep did. Sleep, as I know from personal experience, is of sufficient importance that my rule-of-thumb is: don’t bother looking for any other causes of attention and memory deficits until you have sorted out your sleep!

Having said that, depressive symptoms showed greater relationship to memory complaints than sleep disturbance.

It’s no big surprise to hear that it is working memory in particular that is affected, because what many women at this time of life complain of is ‘brain fog’ — the feeling that your brain is full of cotton-wool. This doesn’t mean that you can’t learn new information, or remember old information. But it does mean that these tasks will be impeded to the extent that you need to hold on to too many bits of information. So mental arithmetic might be more difficult, or understanding complex sentences, or coping with unexpected disruptions to your routine, or concentrating on a task for a long time.

These sorts of problems are typical of those produced by on-going sleep deprivation, stress, and depression.

One caveat to the findings is that the study participants tended to be of above-average intelligence and education. This would protect them to a certain extent from cognitive decline — those with less cognitive reserve might display wider impairment. Other studies have found verbal memory, and processing speed, impaired during menopause.

Note, too, that a long-running, large population study has found no evidence for a decline in working memory, or processing speed, in women as they pass through perimenopause and menopause.

Reference: 

Source: 

Topics: 

tags memworks: 

tags problems: 

tags: 

tags development: 

tags lifestyle: 

Pages

Subscribe to RSS - retrieval