episodic memory

Gist memory may be why false memories are more common in older adults

  • Gist processing appears to play a strong role in false memories.
  • Older adults rely on gist memory more.
  • Older adults find it harder to recall specific sensory details that would help confirm whether a memory is true.

Do older adults forget as much as they think, or is it rather that they ‘misremember’?

A small study adds to evidence that gist memory plays an important role in false memories at any age, but older adults are more susceptible to misremembering because of their greater use of gist memory.

Gist memory is about remembering the broad story, not the details. We use schemas a lot. Schemas are concepts we build over time for events and experiences, in order to relieve the cognitive load. They allow us to respond and process faster. We build schemas for such things as going to the dentist, going to a restaurant, attending a lecture, and so on. Schemas are very useful, reminding us what to expect and what to do in situations we have experienced before. But they are also responsible for errors of perception and memory — we see and remember what we expect to see.

As we get older, we do of course build up more and firmer schemas, making it harder to really see with fresh eyes. Which means it’s harder for us to notice the details, and easier for us to misremember what we saw.

A small study involving 20 older adults (mean age 75) had participants look at 26 different pictures of common scenes (such as a farmyard, a bathroom) for about 10 seconds, and asked them to remember as much as they could about the scenes. Later, they were shown 300 pictures of objects that were either in the scene, related to the scene (but not actually in the scene), or not commonly associated to the scene, and were required to say whether or not the objects were in the picture. Brain activity was monitored during these tests. Performance was also compared with that produced in a previous identical study, involving 22 young adults (mean age 23).

As expected and as is typical, there was a higher hit rate for schematic items and a higher rate of false memories for schematically related lures (items that belong to the schema but didn’t appear in the picture). True memories activated the typical retrieval network (medial prefrontal cortex, hippocampus/parahippocampal gyrus, inferior parietal lobe, right middle temporal gyrus, and left fusiform gyrus).

Activity in some of these regions (frontal-parietal regions, left hippocampus, right MTG, and left fusiform) distinguished hits from false alarms, supporting the idea that it’s more demanding to retrieve true memories than illusory ones. This contrasts with younger adults who in this and previous research have displayed the opposite pattern. The finding is consistent, however, with the theory that older adults tend to engage frontal resources at an earlier level of difficulty.

Older adults also displayed greater activation in the medial prefrontal cortex for both schematic and non-schematic hits than young adults did.

While true memories activated the typical retrieval network, and there were different patterns of activity for schematic vs non-schematic hits, there was no distinctive pattern of activity for retrieving false memories. However, there was increased activity in the middle frontal gyrus, middle temporal gyrus, and hippocampus/parahippocampal gyrus as a function of the rate of false memories.

Imaging also revealed that, like younger adults, older adults also engage the ventromedial prefrontal cortex when retrieving schematic information, and that they do so to a greater extent. Activation patterns also support the role of the mediotemporal lobe (MTL), and the posterior hippocampus/parahippocampal gyrus in particular, in determining true memories from false. Note that schematic information is not part of this region’s concern, and there was no consistent difference in activation in this region for schematic vs non-schematic hits. But older adults showed this shift within the hippocampus, with much of the activity moving to a more posterior region.

Sensory details are also important for distinguishing between true and false memories, but, apart from activity in the left fusiform gyrus, older adults — unlike younger adults — did not show any differential activation in the occipital cortex. This finding is consistent with previous research, and supports the conclusion that older adults don’t experience the recapitulation of sensory details in the same way that younger adults do. This, of course, adds to the difficulty they have in distinguishing true and false memories.

Older adults also showed differential activation of the right MTG, involved in gist processing, for true memories. Again, this is not found in younger adults, and supports the idea that older adults depend more on schematic gist information to assess whether a memory is true.

However, in older adults, increased activation of both the MTL and the MTG is seen as rates of false alarms increase, indicating that both gist and episodic memory contribute to their false memories. This is also in line with previous research, suggesting that memories of specific events and details can (incorrectly) provide support for false memories that are consistent with such events.

Older adults, unlike young adults, failed to show differential activity in the retrieval network for targets and lures (items that fit in with the schema, but were not in fact present in the image).

What does all this mean? Here’s what’s important:

  • older adults tend to use schema information more when trying to remember
  • older adults find it harder to recall specific sensory details that would help confirm a memory’s veracity
  • at all ages, gist processing appears to play a strong role in false memories
  • memory of specific (true) details can be used to endorse related (but false) details.

What can you do about any of this? One approach would be to make an effort to recall specific sensory details of an event rather than relying on the easier generic event that comes to mind first. So, for example, if you’re asked to go to the store to pick up orange juice, tomatoes and muesli, you might end up with more familiar items — a sort of default position, as it were, because you can’t quite remember what you were asked. If you make an effort to remember the occasion of being told — where you were, how the other person looked, what time of day it was, other things you talked about, etc — you might be able to bring the actual items to mind. A lot of the time, we simply don’t make the effort, because we don’t think we can remember.

https://www.eurekalert.org/pub_releases/2018-03/ps-fdg032118.php

Reference: 

[4331] Webb, C. E., & Dennis N. A.
(Submitted).  Differentiating True and False Schematic Memories in Older Adults.
The Journals of Gerontology: Series B.

Topics: 

tags development: 

tags memworks: 

tags problems: 

Being overweight linked to poorer memory

  • A study of younger adults adds to evidence that higher BMI is associated with poorer cognition, and points to a specific impairment in memory integration.

A small study involving 50 younger adults (18-35; average age 24) has found that those with a higher BMI performed significantly worse on a computerised memory test called the “Treasure Hunt Task”.

The task involved moving food items around complex scenes (e.g., a desert with palm trees), hiding them in various locations, and indicating afterward where and when they had hidden them. The test was designed to disentangle object, location, and temporal order memory, and the ability to integrate those separate bits of information.

Those with higher BMI were poorer at all aspects of this task. There was no difference, however, in reaction times, or time taken at encoding. In other words, they weren't slower, or less careful when they were learning. Analysis of the errors made indicated that the problem was not with spatial memory, but rather with the binding of the various elements into one coherent memory.

The results could suggest that overweight people are less able to vividly relive details of past events. This in turn might make it harder for them to keep track of what they'd eaten, perhaps making overeating more likely.

The 50 participants included 27 with BMI below 25, 24 with BMI 25-30 (overweight), and 8 with BMI over 30 (obese). 72% were female. None were diagnosed diabetics. However, the researchers didn't take other health conditions which often co-occur with obesity, such as hypertension and sleep apnea, into account.

This is a preliminary study only, and further research is needed to validate its findings. However, it's significant in that it adds to growing evidence that the cognitive impairments that accompany obesity are present early in adult life and are not driven by diabetes.

The finding is also consistent with previous research linking obesity with dysfunction of the hippocampus and the frontal lobe.

http://www.eurekalert.org/pub_releases/2016-02/uoc-bol022616.php

https://www.theguardian.com/science/neurophilosophy/2016/mar/03/obesity-linked-to-memory-deficits

Reference: 

[4183] Cheke, L. G., Simons J. S., & Clayton N. S.
(2015).  Higher body mass index is associated with episodic memory deficits in young adults.
The Quarterly Journal of Experimental Psychology. 1 - 12.

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

tags problems: 

Concrete thinking may reduce the power of traumatic memories

  • Focusing on concrete details when experiencing a traumatic event may, oddly enough, protect you more from the power of those memories, than if you tried to distance yourself from what you are experiencing.

Can you help protect yourself from the memory of traumatic events? A new study suggests that, by concentrating on concrete details as you live through the event, you can reduce the number of intrusive memories later experienced.

The study, aimed particularly at those who deliberately expose themselves to the risk of PTSD (e.g., emergency workers, military personnel, journalists in conflict zones), involved 50 volunteers who rated their mood before watching several films with traumatic scenes. After the first film, they rated their feelings. For the next four films, half the participants were asked to consider abstract questions, such as why such situations happened. The other half were asked to consider concrete questions, such as what they could see and hear and what needed to be done from that point. Afterward, they gave another rating on their mood. Finally, they were asked to watch a final film in the same way as they had practiced, rating feelings of distress and horror as they had for the first film.

The volunteers were then given a diary to record intrusive memories of anything they had seen in the films for the next week.

Both groups, unsurprisingly, saw their mood decline after the films, but those who had been practicing concrete thinking were less affected, and also experienced less intense feelings of distress and horror when watching the final film. Abstract thinkers experienced nearly twice as many intrusive memories in the following week.

The study follows previous findings that emergency workers who adopted an abstract processing approach showed poorer coping, and that those who processed negative events using abstract thinking experienced a longer period of low mood, compared to those using concrete thinking.

Further study to confirm this finding is of course needed in real-life situations, but this does suggest a strategy that people who regularly experience trauma could try. It is particularly intriguing because, on the face of it, it would seem like quite the wrong strategy. Distancing yourself from the trauma you're experiencing, trying to see it as something less real, seems a more obvious coping strategy. This study suggests it is exactly the wrong thing to do.

It also seems likely that this tendency to use concrete or abstract processing may reflect a more general trait. Self-reported proneness to intrusive memories in everyday life was significantly correlated with intrusive memories of the films. Perhaps we should all think about the way we view the world, and those of us who tend to take a more abstract approach should try paying more attention to concrete details. This is, after all, something I've been recommending in the context of fighting sensory impairment and age-related cognitive decline!

Abstract thinking certainly has its place, but as I've said before, we need flexibility. Effective cognitive management is about tailoring your style of thinking to the task's demands.

http://www.eurekalert.org/pub_releases/2016-05/uoo-tdc050516.php

Reference: 

Topics: 

tags memworks: 

tags problems: 

Physical activity linked to better memory for names and faces among older adults

  • A small study adds to evidence that walking improves memory in older adults, and indicates that this is particularly helpful for memory tasks the seniors find challenging.

A small study that fitted 29 young adults (18-31) and 31 older adults (55-82) with a device that recorded steps taken and the vigor and speed with which they were made, has found that those older adults with a higher step rate performed better on memory tasks than those who were more sedentary. There was no such effect seen among the younger adults.

Improved memory was found for both visual and episodic memory, and was strongest with the episodic memory task. This required recalling which name went with a person's face — an everyday task that older adults often have difficulty with.

However, the effect on visual memory had more to do with time spent sedentary than step rate. With the face-name task, both time spent sedentary and step rate were significant factors, and both factors had a greater effect than they had on visual memory.

Depression and hypertension were both adjusted for in the analysis.

There was no significant difference in executive function related to physical activity, although previous studies have found an effect. Less surprisingly, there was also no significant effect on verbal memory.

Both findings might be explained in terms of cognitive demand. The evidence suggests that the effect of physical exercise is only seen when the task is sufficiently cognitively demanding. No surprise that verbal memory (which tends to be much less affected by age) didn't meet that challenge, but interestingly, the older adults in this study were also less impaired on executive function than on visual memory. This is unusual, and reminds us that, especially with small studies, you cannot ignore the individual differences.

This general principle may also account for the lack of effect among younger adults. It is interesting to speculate whether physical activity effects would be found if the younger adults were given much more challenging tasks (either by increasing their difficulty, or selecting a group who were less capable).

Step Rate was calculated by total steps taken divided by the total minutes in light, moderate, and vigorous activities, based on the notion that this would provide an independent indicator of physical activity intensity (how briskly one is walking). Sedentary Time was the total minutes spent sedentary.

http://www.eurekalert.org/pub_releases/2015-11/bumc-slp112415.php

Reference: 

[4045] Hayes, S. M., Alosco M. L., Hayes J. P., Cadden M., Peterson K. M., Allsup K., et al.
(2015).  Physical Activity Is Positively Associated with Episodic Memory in Aging.
Journal of the International Neuropsychological Society. 21(Special Issue 10), 780 - 790.

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

Individuals vary in how they remember events

  • Individuals vary in how vividly they remember the past. A new study links this to differences in brain activity which may reflect a stable trait.
  • The finding also has implications for assessments of age-related cognitive decline.

A study involving 66 healthy young adults (average age 24) has revealed that different individuals have distinct brain connectivity patterns that are associated with different ways of experiencing and remembering the past.

The participants completed an online questionnaire on how well they remember autobiographical events and facts, then had their brains scanned. Brain scans found that those with richly-detailed autobiographical memories had higher mediotemporal lobe connectivity to regions at the back of the brain involved in visual perception, whereas those tending to recall the past in a factual manner showed higher mediotemporal lobe connectivity to prefrontal regions involved in organization and reasoning.

The finding supports the idea that those with superior autobiographical memory have a greater ability or tendency to reinstate rich images and perceptual details, and that this appears to be a stable personality trait.

The finding also raises interesting questions about age-related cognitive decline. Many people first recognize cognitive decline in their increasing difficulty retrieving the details of events. But this may be something that is far more obvious and significant to people who are used to retrieving richly-detailed memories. Those who rely on a factual approach may be less susceptible.

http://www.eurekalert.org/pub_releases/2015-12/bcfg-wiy121015.php

Full text available at http://www.sciencedirect.com/science/article/pii/S0010945215003834

Reference: 

Source: 

Topics: 

tags memworks: 

tags problems: 

Mental imagery training improves multiple sclerosis patients' cognition

  • Difficulties in remembering past events and imagining future ones are often experienced by those with multiple sclerosis.
  • A trial involving patients with MS has found that training in mentally visualizing imaginery scenarios can improve their ability to recall past events.
  • Deficits in event memory and imagination have also been found in older adults, so this finding might have wider application.

Training in a mental imagery technique has been found to help multiple sclerosis patients in two memory domains often affected by the disease: autobiographical memory and episodic future thinking.

The study involved 40 patients with relapsing-remitting MS, all of whom were receiving regular drug therapy and all of whom had significant brain atrophy. Participants were randomly assigned to one of three groups, one of which received the imagery training (17 participants), while the other two were controls — a control receiving a sham verbal training (10) and a control receiving no training (13). The six training sessions lasted two hours and occurred once or twice a week.

The training involved:

  • mental visualization exercises of increasing difficulty, using 10 items that the patient had to imagine and describe, looking at both static aspects (such as color and shape) and an action carried out with the item
  • guided construction exercises, using 5 scenarios involving several characters (so, for example, the patient might start with the general idea of a cook preparing a meal, and be guided through more complexities, such as the type of table, the ingredients being used, etc)
  • self-visualization exercises, in which the patient imagined themselves within a scenario.

Autobiographical memory and episodic future thinking were assessed, before and after, using an adapted version of the Autobiographical Interview, which involves subjects recalling events from earlier periods in their life, in response to specific cue words. The events are supposed to be unique, and the subjects are asked to recall as many details as possible.

Only those receiving the training showed a significant improvement in their scores.

Those who had the imagery training also reported an increase in general self-confidence, with higher levels of control and vitality.

Remembering past events and imagining future ones are crucial cognitive abilities, with more far-reaching impacts than may be immediately obvious. For example, episodic future thought is important for forming and carrying out intentions.

These are also areas which may be affected by age. A recent study, for example, found that older adults are less likely to spontaneously acquire items that would later allow a problem to be solved, and are also less likely to subsequently use these items to solve the problems. An earlier study found that older adults have more difficulty in imagining future experiences.

These results, then, that show us that people with deficits in specific memory domains can be helped by specific training, is not only of interest to those with MS, but also more generally.

http://www.eurekalert.org/pub_releases/2015-08/ip-mvi082515.php

Reference: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

tags strategies: 

Movie study confirms older people are more distractible

Idiosyncratic brain activity among older people watching a thriller-type movie adds to evidence that:

  • age may affect the ability to perceive and remember the order of events (explaining why older adults may find it harder to follow complex plots)
  • age affects the ability to focus attention and not be distracted
  • age affects the brain's connectivity — how well connected regions work together.

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).

While many studies have looked at how age changes brain function, the stimuli used have typically been quite simple. This thriller-type story provides more complex and naturalistic stimuli.

Younger adults' brains responded to the TV program in a very uniform way, while older adults showed much more idiosyncratic responses. The TV program (“Bang! You're dead”) has previously been shown to induce widespread synchronization of brain responses (such movies are, after all, designed to focus attention on specific people and objects; following along with the director is, in a manner of speaking, how we follow the plot). The synchronization seen here among younger adults may reflect the optimal response, attention focused on the most relevant stimulus. (There is much less synchronization when the stimuli are more everyday.)

The increasing asynchronization with age seen here has previously been linked to poorer comprehension and memory. In this study, there was a correlation between synchronization and measures of attentional control, such as fluid intelligence and reaction time variability. There was no correlation between synchronization and crystallized intelligence.

The greatest differences were seen in the brain regions controlling attention (the superior frontal lobe and the intraparietal sulcus) and language processing (the bilateral middle temporal gyrus and left inferior frontal gyrus).

The researchers accordingly suggested that the reason for the variability in brain patterns seen in older adults lies in their poorer attentional control — specifically, their top-down control (ability to focus) rather than bottom-up attentional capture. Attentional capture has previously been shown to be well preserved in old age.

Of course, it's not necessarily bad that a watcher doesn't rigidly follow the director's manipulation! The older adults may be showing more informed and cunning observation than the younger adults. However, previous studies have found that older adults watching a movie tend to vary more in where they draw an event boundary; those showing most variability in this regard were the least able to remember the sequence of events.

The current findings therefore support the idea that older adults may have increasing difficulty in understanding events — somthing which helps explain why some old people have increasing trouble following complex plots.

The findings also add to growing evidence that age affects functional connectivity (how well the brain works together).

It should be noted, however, that it is possible that there could also be cohort effects going on — that is, effects of education and life experience.

http://www.eurekalert.org/pub_releases/2015-08/uoc-ymt081415.php

Reference: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

How your brain chunks ‘moments’ into ‘events’

We talk about memory for ‘events’, but how does the brain decide what an event is? How does it decide what is part of an event and what isn’t? A new study suggests that our brain uses categories it creates based on temporal relationships between people, objects, and actions — i.e., items that tend to—or tend not to—pop up near one another at specific times.

05/2013

Mynd: 

tags memworks: 

Self-imagination helps memory in both healthy and memory-impaired

December, 2012

A small study involving patients with TBI has found that the best learning strategies are ones that call on the self-schema rather than episodic memory, and the best involves self-imagination.

Sometime ago, I reported on a study showing that older adults could improve their memory for a future task (remembering to regularly test their blood sugar) by picturing themselves going through the process. Imagination has been shown to be a useful strategy in improving memory (and also motor skills). A new study extends and confirms previous findings, by testing free recall and comparing self-imagination to more traditional strategies.

The study involved 15 patients with acquired brain injury who had impaired memory and 15 healthy controls. Participants memorized five lists of 24 adjectives that described personality traits, using a different strategy for each list. The five strategies were:

  • think of a word that rhymes with the trait (baseline),
  • think of a definition for the trait (semantic elaboration),
  • think about how the trait describes you (semantic self-referential processing),
  • think of a time when you acted out the trait (episodic self-referential processing), or
  • imagine acting out the trait (self-imagining).

For both groups, self-imagination produced the highest rates of free recall of the list (an average of 9.3 for the memory-impaired, compared to 3.2 using the baseline strategy; 8.1 vs 3.2 for the controls — note that the controls were given all 24 items in one list, while the memory-impaired were given 4 lists of 6 items).

Additionally, those with impaired memory did better using semantic self-referential processing than episodic self-referential processing (7.3 vs 5.7). In contrast, the controls did much the same in both conditions. This adds to the evidence that patients with brain injury often have a particular problem with episodic memory (knowledge about specific events). Episodic memory is also particularly affected in Alzheimer’s, as well as in normal aging and depression.

It’s also worth noting that all the strategies that involved the self were more effective than the two strategies that didn’t, for both groups (also, semantic elaboration was better than the baseline strategy).

The researchers suggest self-imagination (and semantic self-referential processing) might be of particular benefit for memory-impaired patients, by encouraging them to use information they can more easily access (information about their own personality traits, identity roles, and lifetime periods — what is termed the self-schema), and that future research should explore ways in which self-imagination could be used to support everyday memory tasks, such as learning new skills and remembering recent events.

Reference: 

Source: 

Topics: 

tags: 

tags memworks: 

tags problems: 

Dopamine decline underlies episodic memory decline in old age

December, 2012

Findings supporting dopamine’s role in long-term episodic memory point to a decline in dopamine levels as part of the reason for cognitive decline in old age, and perhaps in Alzheimer’s.

The neurotransmitter dopamine is found throughout the brain and has been implicated in a number of cognitive processes, including memory. It is well-known, of course, that Parkinson's disease is characterized by low levels of dopamine, and is treated by raising dopamine levels.

A new study of older adults has now demonstrated the effect of dopamine on episodic memory. In the study, participants (aged 65-75) were shown black and white photos of indoor scenes and landscapes. The subsequent recognition test presented them with these photos mixed in with new ones, and required them to note which photos they had seen before. Half of the participants were first given Levodopa (‘L-dopa’), and half a placebo.

Recognition tests were given two and six hours after being shown the photos. There was no difference between the groups at the two-hour test, but at the six-hour test, those given L-dopa recognized up to 20% more photos than controls.

The failure to find a difference at the two-hour test was expected, if dopamine’s role is to help strengthen the memory code for long-term storage, which occurs after 4-6 hours.

Individual differences indicated that the ratio between the amount of Levodopa taken and body weight is key for an optimally effective dose.

The findings therefore suggest that at least part of the reason for the decline in episodic memory typically seen in older adults is caused by declining levels of dopamine.

Given that episodic memory is one of the first and greatest types of memory hit by Alzheimer’s, this finding also has implications for Alzheimer’s treatment.

Caffeine improves recognition of positive words

Another recent study also demonstrates, rather more obliquely, the benefits of dopamine. In this study, 200 mg of caffeine (equivalent to 2-3 cups of coffee), taken 30 minutes earlier by healthy young adults, was found to improve recognition of positive words, but had no effect on the processing of emotionally neutral or negative words. Positive words are consistently processed faster and more accurately than negative and neutral words.

Because caffeine is linked to an increase in dopamine transmission (an indirect effect, stemming from caffeine’s inhibitory effect on adenosine receptors), the researchers suggest that this effect of caffeine on positive words demonstrates that the processing advantage enjoyed by positive words is driven by the involvement of the dopaminergic system.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

Pages

Subscribe to RSS - episodic memory
Error | About memory

Error

The website encountered an unexpected error. Please try again later.