strategies older adults

More evidence bilingualism protects against dementia

An Indian study involving 648 dementia patients, of whom 391 were bilingual, has found that, overall, bilingual patients developed dementia 4.5 years later than the monolingual ones. There was no additional advantage to speaking more than two languages.

Mynd: 

tags development: 

tags problems: 

tags strategies: 

tags: 

Learning Facebook may keep seniors sharp

Preliminary findings from a small study show that older adults (68-91), after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their

03/2013

Mynd: 

tags memworks: 

tags problems: 

tags strategies: 

tags development: 

Intensive training helps seniors with long-term aphasia

February, 2013

A six-week specific language therapy program not only improved chronic aphasic’s ability to name objects, but produced durable changes in brain activity that continued to bring benefits post-training.

Here’s an encouraging study for all those who think that, because of age or physical damage, they must resign themselves to whatever cognitive impairment or decline they have suffered. In this study, older adults who had suffered from aphasia for a long time nevertheless improved their language function after six weeks of intensive training.

The study involved nine seniors with chronic aphasia and 10 age-matched controls. Those with aphasia were given six weeks of intensive and specific language therapy, after which they showed significantly better performance at naming objects. Brain scans revealed that the training had not only stimulated language circuits, but also integrated the default mode network (the circuits used when our brain is in its ‘resting state’ — i.e., not thinking about anything in particular), producing brain activity that was similar to that of the healthy controls.

Moreover, these new circuits continued to be active after training, with participants continuing to improve.

Previous research has implicated abnormal functioning of the default mode network in other cognitive disorders.

Although it didn’t reach significance, there was a trend suggesting that the level of integration of the default mode network prior to therapy predicted the outcome of the training.

The findings are especially relevant to the many seniors who no longer receive treatment for stroke damage they may have had for many years. They also add to the growing evidence for the importance of the default mode network. Changes in the integration of the default mode network with other circuits have also been implicated in age-related cognitive decline and Alzheimer’s.

Interestingly, some research suggests that meditation may help improve the coherence of brainwaves that overlap the default mode network. Meditation, already shown to be helpful for improving concentration and focus, may be of greater benefit for fighting age-related cognitive decline than we realize!

Reference: 

Source: 

tags memworks: 

Topics: 

tags problems: 

tags strategies: 

tags development: 

New direction for cognitive training in the elderly

October, 2012

A pilot study suggests declines in temporal processing are an important part of age-related cognitive decline, and shows how temporal training can significantly improve some cognitive abilities.

Here’s an exciting little study, implying as it does that one particular aspect of information processing underlies much of the cognitive decline in older adults, and that this can be improved through training. No, it’s not our usual suspect, working memory, it’s something far less obvious: temporal processing.

In the study, 30 older adults (aged 65-75) were randomly assigned to three groups: one that received ‘temporal training’, one that practiced common computer games (such as Solitaire and Mahjong), and a no-activity control. Temporal training was provided by a trademarked program called Fast ForWord Language® (FFW), which was developed to help children who have trouble reading, writing, and learning.

The training, for both training groups, occupied an hour a day, four days a week, for eight weeks.

Cognitive assessment, carried out at the beginning and end of the study, and for the temporal training group again 18 months later, included tests of sequencing abilities (how quickly two sounds could be presented and still be accurately assessed for pitch or direction), attention (vigilance, divided attention, and alertness), and short-term memory (working memory span, pattern recognition, and pattern matching).

Only in the temporal training group did performance on any of the cognitive tests significantly improve after training — on the sequencing tests, divided attention, matching complex patterns, and working memory span. These positive effects still remained after 18 months (vigilance was also higher at the end of training, but this improvement wasn’t maintained).

This is, of course, only a small pilot study. I hope we will see a larger study, and one that compares this form of training against other computer training programs. It would also be good to see some broader cognitive tests — ones that are less connected to the temporal training. But I imagine that, as I’ve discussed before, an effective training program will include more than one type of training. This may well be an important component of such a program.

Reference: 

[3075] Szelag E, Skolimowska J. Cognitive function in elderly can be ameliorated by training in temporal information processing. Restorative Neurology and Neuroscience [Internet]. 2012 ;30(5):419 - 434. Available from: http://dx.doi.org/10.3233/RNN-2012-120240

Source: 

tags memworks: 

Topics: 

tags problems: 

tags strategies: 

tags development: 

Cognitive training shown to help healthy older adults

May, 2012

A comparison of multi-domain and single-domain cognitive training shows both improve cognitive performance in healthy older adults, but multi-domain training produces greater benefits.

Previous research has been equivocal about whether cognitive training helps cognitively healthy older adults. One recent review concluded that cognitive training could help slow age-related decline in a range of cognitive tasks; another found no evidence that such training helps slow or prevent the development of Alzheimer’s in healthy older adults. Most of the studies reviewed looked at single-domain training only: memory, reasoning, processing speed, reading, solving arithmetic problems, or strategy training (1). As we know from other studies, training in specific tasks is undeniably helpful for improving your performance at those specific tasks. However, there is little evidence for wider transfer. There have been few studies employing multi-domain training, although two such have found positive benefits.

In a new Chinese study, 270 healthy older adults (65-75) were randomly assigned to one of three groups. In the two experimental groups, participants were given one-hour training sessions twice a week for 12 weeks. Training took place in small groups of around 15. The first 15 minutes of each hour involved a lecture focusing on diseases common in older adults. The next 30 minutes were spent in instruction in one specific technique and how to use it in real life. The last 15 minutes were used to consolidate the skills by solving real-life problems.

One group were trained using a multi-domain approach, involving memory, reasoning, problem solving, map reading, handicrafts, health education and exercise. The other group trained on reasoning only (involving the towers of Hanoi, numerical reasoning, Raven Progressive Matrices, and verbal reasoning). Homework was assigned. Six months after training, three booster sessions (a month apart) were offered to 60% of the participants. The third group (the control) was put on a waiting list. All three groups attended a lecture on aspects of healthy living every two months.

All participants were given cognitive tests before training and after training, and again after 6 months, and after one year. Cognitive function was assessed using the Stroop Test, the Trail Making test, the Visual Reasoning test, and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS, Form A).

Both the multi-domain and single-domain cognitive training produced significant improvement in cognitive scores (the former in RBANS, visual reasoning, and immediate and delayed memory; the latter in RBANS, visual reasoning, word interference, and visuospatial/constructional score), although single-domain training produced less durable benefits (after a year, the multi-domain group still showed the benefit in RBANS, delayed memory and visual reasoning, while the single-domain group only showed benefits in word interference). Booster training also produced benefits, consolidating training in reasoning, visuospatial/constructional abilities and faster processing.

Reasoning ability seemed particularly responsive to training. Although it would be reasonable to assume that single-domain training, which focused on reasoning, would produce greater improvement than multi-domain training in this specific area, there was in fact no difference between the two groups right after training or at six months. And at 12 months, the multi-domain group was clearly superior.

In sum, the study provides evidence that cognitive training helps prevent cognitive decline in healthy older people, that specific training can generalize to other tasks, but that programs that involve several cognitive domains produce more lasting benefits.

Reference: 

Source: 

tags development: 

Topics: 

tags strategies: 

tags problems: 

Smartphone training helps people with serious memory impairment regain independence

April, 2012

A smartphone training program, specifically designed for those with moderate-to-severe memory impairment, was found to significantly improve day-to-day functioning in a small study.

While smartphones and other digital assistants have been found to help people with mild memory impairment, their use by those with greater impairment has been less successful. However, a training program developed at the Baycrest Centre for Geriatric Care has been using the power of implicit memory to help impaired individuals master new skills.

The study involved 10 outpatients, aged 18 to 55 (average age 44), who had moderate-to-severe memory impairment, the result of non-neurodegenerative conditions including ruptured aneurysm, stroke, tumor, epilepsy, closed-head injury, or anoxia after a heart attack. They all reported difficulty in day-to-day functioning.

Participants were trained in the basic functions of either a smartphone or another personal digital assistant (PDA) device, using an errorless training method that tapped into their preserved implicit /procedural memory. In this method, cues are progressively faded in such a way as to ensure there is enough information to prompt the correct response. The fading of the cues was based on the trainer’s observation of the patient’s behavior.

Participants were given several one-hour training sessions to learn calendaring skills such as inputting appointments and reminders. Each application was broken down into its component steps, and each step was given its own score in terms of how much support was needed. Support could either comprise a full explanation and demonstration; full explanation plus pointing to the next step; simply pointing to the next step; simply confirming a correct query; no support. The hour-long sessions occurred twice a week (with one exception, who only received one session a week). Training continued until the individual reached criterion-level performance (98% correct over a single session). On average, this took about 8 sessions, but as a general rule, those with relatively focal impairment tended to be substantially quicker than those with more extensive cognitive impairment.

After this first training phase, participants took their devices home, where they extended their use of the device through new applications mastered using the same protocol. These new tasks were carefully scaffolded to enable progressively more difficult tasks to be learned.

To assess performance, participants were given a schedule of 10 phone calls to complete over a two-week period at different times of the day. Additionally, family members kept a log of whether real-life tasks were successfully completed or not, and both participants and family members completed several questionnaires: one rating a list of common memory mistakes on a frequency-of-occurrence scale, another measuring confidence in dealing with various memory-demanding scenarios, and a third examining the participant's ability to use the device.

All 10 individuals showed improvement in day-to-day memory functioning after taking the training, and this improvement continued when the patients were followed up three to eight months later. Specifically, prospective memory (memory for future events) improved, and patient confidence in dealing with memory-demanding situations increased. Some patients also reported broadening their use of their device to include non-prospective memory tasks (e.g. entering names and/or photos of new acquaintances, or entering details of conversations).

It should be noted that these patients were some time past their injury, which was on average some 3 ½ years earlier (ranging from 10 months to over 25 years). Accordingly, they had all been through standard rehabilitation training, and already used many memory strategies. Questioning about strategy use prior to the training revealed that six participants used more memory strategies than they had before their injury, three hadn’t changed their strategy use, and one used fewer. Strategies included: calendars, lists, reminders from others, notebooks, day planner, placing items in prominent places, writing a note, relying on routines, alarms, organizing information, saying something out loud in order to remember it, mental elaboration, concentrating hard, mental retracing, computer software, spaced repetition, creating acronyms, alphabetic retrieval search.

The purpose of this small study, which built on an earlier study involving only two patients, was to demonstrate the generalizability of the training method to a larger number of individuals with moderate-to-severe memory impairment. Hopefully, it will also reassure such individuals, who tend not to use electronic memory aids, that these are a useful tool that they can, with the right training, learn to use successfully.

Reference: 

Source: 

tags: 

Topics: 

tags strategies: 

tags problems: 

Video game training benefits cognition in some older adults

April, 2012

A study has found that playing a cognitively complex video game improved cognitive performance in some older adults, particularly those with initially poorer cognitive scores.

A number of studies have found evidence that older adults can benefit from cognitive training. However, neural plasticity is thought to decline with age, and because of this, it’s thought that the younger-old, and/or the higher-functioning, may benefit more than the older-old, or the lower-functioning. On the other hand, because their performance may already be as good as it can be, higher-functioning seniors may be less likely to benefit. You can find evidence for both of these views.

In a new study, 19 of 39 older adults (aged 60-77) were given training in a multiplayer online video game called World of Warcraft (the other 20 formed a control group). This game was chosen because it involves multitasking and switching between various cognitive abilities. It was theorized that the demands of the game would improve both spatial orientation and attentional control, and that the multiple tasks might produce more improvement in those with lower initial ability compared to those with higher ability.

WoW participants were given a 2-hour training session, involving a 1-hour lecture and demonstration, and one hour of practice. They were then expected to play the game at home for around 14 hours over the next two weeks. There was no intervention for the control group. All participants were given several cognitive tests at the beginning and end of the two week period: Mental Rotation Test; Stroop Test; Object Perspective Test; Progressive Matrices; Shipley Vocabulary Test; Everyday Cognition Battery; Digit Symbol Substitution Test.

As a group, the WoW group improved significantly more on the Stroop test (a measure of attentional control) compared to the control group. There was no change in the other tests. However, those in the WoW group who had performed more poorly on the Object Perspective Test (measuring spatial orientation) improved significantly. Similarly, on the Mental Rotation Test, ECB, and Progressive Matrices, those who performed more poorly at the beginning tended to improve after two weeks of training. There was no change on the Digit Symbol test.

The finding that only those whose performance was initially poor benefited from cognitive training is consistent with other studies suggesting that training only benefits those who are operating below par. This is not really surprising, but there are a few points that should be made.

First of all, it should be noted that this was a group of relatively high-functioning young-old adults — poorer performance in this case could be (relatively) better performance in another context. What it comes down to is whether you are operating at a level below which you are capable of — and this applies broadly, for example, experiments show that spatial training benefits females but not males (because males tend to already have practiced enough).

Given that, in expertise research, training has an on-going, apparently limitless, effect on performance, it seems likely that the limited benefits shown in this and other studies is because of the extremely limited scope of the training. Fourteen hours is not enough to improve people who are already performing adequately — but that doesn’t mean that they wouldn’t improve with more hours. I have yet to see any interventions with older adults that give them the amount of cognitive training you would expect them to need to achieve some level of mastery.

My third and final point is the specific nature of the improvements. This has also been shown in other studies, and sometimes appears quite arbitrary — for example, one 3-D puzzle game apparently improved mental rotation, while a different 3-D puzzle game had no effect. The point being that we still don’t understand the precise attributes needed to improve different skills (although the researchers advocate the use of a tool called cognitive task analysis for revealing the underlying qualities of an activity) — but we do understand that it is a matter of precise attributes, which is definitely a step in the right direction.

The main thing, then, that you should take away from this is the idea that different activities involve specific cognitive tasks, and these, and only these, will be the ones that benefit from practicing the activities. You therefore need to think about what tasks you want to improve before deciding on the activities to practice.

Reference: 

Source: 

Topics: 

tags problems: 

tags strategies: 

tags development: 

tags lifestyle: 

tags memworks: 

Music training protects against aging-related hearing loss

February, 2012

More evidence that music training protects older adults from age-related impairment in understanding speech, adding to the potential benefits of music training in preventing dementia.

I’ve spoken before about the association between hearing loss in old age and dementia risk. Although we don’t currently understand that association, it may be that preventing hearing loss also helps prevent cognitive decline and dementia. I have previously reported on how music training in childhood can help older adults’ ability to hear speech in a noisy environment. A new study adds to this evidence.

The study looked at a specific aspect of understanding speech: auditory brainstem timing. Aging disrupts this timing, degrading the ability to precisely encode sound.

In this study, automatic brain responses to speech sounds were measured in 87 younger and older normal-hearing adults as they watched a captioned video. It was found that older adults who had begun musical training before age 9 and engaged consistently in musical activities through their lives (“musicians”) not only significantly outperformed older adults who had no more than three years of musical training (“non-musicians”), but encoded the sounds as quickly and accurately as the younger non-musicians.

The researchers qualify this finding by saying that it shows only that musical experience selectively affects the timing of sound elements that are important in distinguishing one consonant from another, not necessarily all sound elements. However, it seems probable that it extends more widely, and in any case the ability to understand speech is crucial to social interaction, which may well underlie at least part of the association between hearing loss and dementia.

The burning question for many will be whether the benefits of music training can be accrued later in life. We will have to wait for more research to answer that, but, as music training and enjoyment fit the definition of ‘mentally stimulating activities’, this certainly adds another reason to pursue such a course.

Reference: 

Source: 

tags memworks: 

Topics: 

tags problems: 

tags strategies: 

tags development: 

Physical evidence bilingualism delays onset of Alzheimer's symptoms

January, 2012

Brain scans reveal that active bilinguals can have nearly twice as much brain atrophy as monolinguals before cognitive performance suffers.

Growing evidence points to greater education and mentally stimulating occupations and activities providing a cognitive reserve that enables people with developing Alzheimer's to function normally for longer. Cognitive reserve means that your brain can take more damage before it has noticeable effects. A 2006 review found that some 30% of older adults found to have Alzheimer’s when autopsied had shown no signs of it when alive.

There are two relevant concepts behind the protection some brains have: cognitive reserve (which I have mentioned on a number of occasions), and brain reserve, which is more structural. ‘Brain reserve’ encapsulates the idea that certain characteristics, such as a greater brain size, help protect the brain from damage. Longitudinal studies have provided evidence, for example, that a larger head size in childhood helps reduce the risk of developing Alzheimer’s.

While cognitive reserve has been most often associated with education, it has also been associated with occupation, bilingualism, and music. A new study provides physical evidence for how effective bilingualism is.

The Toronto study involved 40 patients with a diagnosis of probable Alzheimer’s, of whom half were bilingual (fluent in a second language, and consistent users of both languages throughout their lives). Bilingual and monolingual patients were matched on a test of cognitive function (the Behavioral Neurology Assessment). The two groups were similar in education levels, gender, and performance on the MMSE and the clock drawing test. The groups did differ significantly in occupational status, with the monolinguals having higher job status than the bilinguals.

Notwithstanding this similarity in cognitive performance, brain scans revealed that the bilingual group had substantially greater atrophy in the medial temporal lobe and the temporal lobe. The two groups did not differ in measures of central and frontal atrophy, however — these regions are not associated with Alzheimer’s.

In other words, bilingualism seems to specifically help protect those areas implicated in Alzheimers, and the bilinguals could take much greater damage to the brain before it impacted their cognitive performance. It is suggested that the act of constantly switching between languages, or suppressing one language in favor of other, may help train the brain to be more flexible when the need comes to compensate for damaged areas.

The findings are consistent with previous observational studies suggesting that bilingualism delays the onset of Alzheimer's symptoms by up to five years.

Reference: 

[2712] Schweizer TA, Ware J, Fischer CE, Craik FIM, Bialystok E. Bilingualism as a contributor to cognitive reserve: Evidence from brain atrophy in Alzheimer’s disease. Cortex [Internet]. 2011 . Available from: http://www.cortexjournal.net/article/S0010-9452(11)00104-3/abstract

Valenzuela MJ and Sachdev P. 2006. Brain reserve and dementia: A systematic review. Psychological Medicine, 36(4): 441e454.

Source: 

tags development: 

Topics: 

tags problems: 

tags strategies: 

tags: 

When age helps decision making

October, 2011

New study modifies findings that younger adults are better decision-makers by showing older adults are better when the scenarios involve multiple considerations.

Research has shown that younger adults are better decision makers than older adults — a curious result. A new study tried to capture more ‘real-world’ decision-making, by requiring participants to evaluate each result in order to strategize the next choice.

This time (whew!), the older adults did better.

In the first experiment, groups of older (60-early 80s) and younger (college-age) adults received points each time they chose from one of four options and tried to maximize the points they earned.  For this task, the younger adults were more efficient at selecting the options that yielded more points.

In the second experiment, the rewards received depended on the choices made previously.  The “decreasing option” gave a larger number of points on each trial, but caused rewards on future trials to be lower. The “increasing option” gave a smaller reward on each trial but caused rewards on future trials to increase.  In one version of the test, the increasing option led to more points earned over the course of the experiment; in another, chasing the increasing option couldn’t make up for the points that could be accrued grabbing the bigger bite on each trial.

The older adults did better on every permutation.

Understanding more complex scenarios is where experience tells. The difference in performance also may reflect the different ways younger and older adults use their brains. Decision-making can involve two different reward learning systems, according to recent thinking. In the model-based system, a cognitive model is constructed that shows how various actions and their rewards are connected to each other. Decisions are made by simulating how one decision will affect future decisions. In the model-free system, on the other hand, only values associated with each choice are considered.

These systems are rooted in different parts of the brain. The model-based system uses the intraparietal sulcus and lateral prefrontal cortex, while the model-free system uses the ventral striatum. There is some evidence that younger adults use the ventral striatum (involved in habitual, reflexive learning and immediate reward) for decision-making more than older adults, and older adults use the dorsolateral prefrontal cortex (involved in more rational, deliberative thinking) more than younger adults.

Reference: 

Source: 

tags: 

Topics: 

tags strategies: 

tags development: 

Pages

Subscribe to RSS - strategies older adults