mental stimulation

Mentally challenging activities key to a healthy aging mind

  • A small study shows significant changes in brain activity among older adults engaged in learning a cognitively demanding skill.

A study involving 39 older adults has found that those randomly assigned to a “high-challenge” group showed improved cognitive performance and more efficient brain activity compared with those assigned to a low-challenge group, or a control group.

The high-challenge group spent at least 15 hours a week for 14 weeks learning progressively more difficult skills in digital photography, quilting, or a combination of both. The low-challenge group met to socialize and engage in activities related to subjects such as travel and cooking. The placebo group engaged in low-demand cognitive tasks such as listening to music, playing simple games, or watching classic movies.

The high-challenge group demonstrated increased neural efficiency in judging words, shown by lowered brain activity when word judgments were easy and increasing activity when they became hard. This is a pattern of response typical of young adults, and was not seen in them before the intervention, or among those in the other groups. To some extent, these changes were still seen a year later.

Moreover, there was a dose-dependent effect — meaning, those who spent more time engaging in the high-challenge activities showed the greatest brain changes.

So did those who were oldest, perhaps because their brains were most in need, perhaps because they were the most disengaged. Most likely, perhaps, because both of these were true.

The bottom line, though, is that, while all mental stimulation is good in terms of building cognitive reserve, actively learning, and really pushing yourself, is what you need to get to, or keep at, the top of your game.

http://www.eurekalert.org/pub_releases/2016-01/ip-mca011516.php

http://content.iospress.com/articles/restorative-neurology-and-neuroscience/rnn150533

Reference: 

Source: 

tags development: 

Topics: 

tags strategies: 

Some cognitive training helps less-educated older adults more

  • A large study in which older adults underwent various types of cognitive training has found that less-educated adults benefited more from training designed to speed processing.

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

While the effects of reasoning and memory training did not differ as a function of how much education the individual had, those older adults with less than a complete high school education experienced a 50% greater benefit from speed of information processing training than college graduates. This advantage was maintained for three years after the end of the training.

The training involved ten 60 to 75-minute sessions over six weeks that focused on visual search and processing information in shorter and shorter times.

Both reasoning and information processing speed training resulted in improved targeted cognitive abilities for 10 years among participants, but memory training did not. Memory training focused on mnemonic strategies for remembering lists and sequences of items, text material, and main ideas and details of stories and other text-based information. Reasoning training focused on improving the ability to solve problems containing a serial pattern.

The researchers speculate that speed of information processing training might help those with less than 12 years of education, who are at greater risk of dementia, close the gap between them and those with more education.

The training modules have been translated into online games delivered by Posit Science.

Less educated study participants were slightly older, less likely to be married, more likely to be African-American, and more likely to have hypertension or diabetes as well as heart disease than the more educated older adults.

http://www.eurekalert.org/pub_releases/2016-01/iu-irs012816.php

Reference: 

Source: 

tags development: 

Topics: 

tags strategies: 

Learning another language boosts white matter

November, 2012

Foreign language learning increases the white matter in the language network and the bridge joining the hemispheres, perhaps helping explain why bilinguals have better executive control.

In my last report, I discussed a finding that intensive foreign language learning ‘grew’ the size of certain brain regions. This growth reflects gray matter increase. Another recent study looks at a different aspect: white matter.

In the study, monthly brain scans were taken of 27 college students, of whom 11 were taking an intensive nine-month Chinese language course. These brain scans were specifically aimed at tracking white matter changes in the students’ brains.

Significant changes were indeed observed in the brains of the language learners. To the researchers’ surprise, however, the biggest changes were observed in an area not previously considered part of the language network: the white matter tracts that cross the corpus callosum, the main bridge between the hemispheres. (I’m not quite sure why they were surprised, since a previous study had found that bilinguals showed higher white matter integrity in the corpus callosum.)

Significant changes were also observed within the left-hemisphere language network and in the right temporal lobe. The rate of increase in white matter was linear, showing a steady progression with each passing month.

The researchers suggest that plasticity in the adult brain may differ from that seen in children’s brains. While children’s brains change mainly through the pruning of unwanted connections and the death of unwanted cells, adult brains may rely mainly on neurogenesis and myelinogenesis.

The growth of new myelin is a process that is still largely mysterious, but it’s suggested that activity at the axons (the extensions of neurons that carry the electrical signals) might trigger increases in the size, density, or number of oligodendrocytes (the cells responsible for the myelin sheaths). This process is thought to be mediated by astrocytes, and in recent years we have begun to realize that astrocytes, long regarded as mere ‘support cells’, are in fact quite important for learning and memory. Just how important is something researchers are still working on.

The finding of changes between the frontal hemispheres and caudate nuclei is consistent with a previously-expressed idea that language learning requires the development of a network to control switching between languages.

Does the development of such a network enhance the task-switching facility in working memory? Previous research has found that bilinguals tend to have better executive control than monolinguals, and it has been suggested that the experience of managing two (or more) languages reorganizes certain brain networks, creating a more effective basis for executive control.

As in the previous study, the language studied was very different from the students’ native language, and they had no previous experience of it. The level of intensity was of course much less.

I do wonder if the fact that the language being studied was Mandarin Chinese limits the generality of these findings. Because of the pictorial nature of the written language, Chinese has been shown to involve a wider network of regions than European languages.

Nevertheless, the findings add to the evidence that adult brains retain the capacity to reorganize themselves, and add to growing evidence that we should be paying more attention to white matter changes.

Reference: 

[3143] Schlegel AA, Rudelson JJ, Tse PU. White Matter Structure Changes as Adults Learn a Second Language. Journal of Cognitive Neuroscience [Internet]. 2012 ;24(8):1664 - 1670. Available from: http://dx.doi.org/10.1162/jocn_a_00240

Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240–250. doi:10.1016/j.tics.2012.03.001

Luk, G. et al. (2011) Lifelong bilingualism maintains white matter integrity in older adults. J. Neurosci. 31, 16808–16813

Source: 

tags: 

Topics: 

tags strategies: 

tags memworks: 

Tai Chi improves cognition and brain size in older adults

August, 2012

A comparison of the effects of regular sessions of tai chi, walking, and social discussion, has found tai chi was associated with the biggest gains in brain volume and improved cognition.

The study involved 120 healthy older adults (60-79) from Shanghai, who were randomly assigned to one of four groups: one that participated in three sessions of tai chi every week for 40 weeks; another that instead had ‘social interaction’ sessions (‘lively discussions’); another in which participants engaged in walking around a track; and a non-intervention group included as a control. Brain scans were taken before and after the 40-week intervention, and cognitive testing took place at 20 weeks as well as these times.

Compared to those who received no intervention, both those who participated in tai chi, and those who participated in the social sessions, showed significant increases in brain volume and on some cognitive measures. However, the tai chi group showed improvement on more cognitive tests than the social group (on the Mattis Dementia Rating Scale, the Trailmaking Tests, delayed recognition on the Auditory Verbal Learning Test, and verbal fluency for animals vs verbal fluency and positive trends only on Trails A and the Auditory test).

Surprisingly, there were no such significant effects from the walking intervention, which involved 30 minutes of brisk walking around a 400m circular track, sandwiched by 10 minutes of warm-up and 10 minutes cool-down exercises. This took place in the same park as the tai chi sessions (which similarly included 20 minutes of warm-up exercises, 20 minutes of tai chi, and 10 minutes of cool-down exercises).

This finding is inconsistent with other research, but the answer seems to lie in individual differences — specifically, speed of walking. Faster walkers showed significantly better performance on the Stroop test, and on delayed recall and recognition on the Auditory Verbal Learning Test. It should be noted that, unlike some studies in which participants were encouraged to reach heart-rate targets, participants in this study were simply told to walk at their own speed. This finding, then, would seem to support the view that brisk walking is needed to reap good health and cognitive benefits (which shouldn’t put anyone off — anything is better than nothing! and speed is likely to come with practice, if that’s your aim).

It should also be noted that this population has generally high rates of walking. It is likely, then, that the additional walking in these sessions did not add a great deal to their existing behavior.

There is a caveat to the strongly positive effects of tai chi: this group showed lower cognitive performance at baseline. This was because the group randomly received more individuals with very low scores (8 compared with 5 in the other groups).

The study is, of course, quite a small one, and a larger study is required to confirm these results.

One final note: the relative differences in enjoyment were not explicitly investigated, but the researchers did note that the social group, who initially were given topics to discuss in their hour-long sessions, then decided to select and organize their own discussions, and have continued to do so for two years following the end of the study. It would have been nice if the researchers had re-tested participants at that point.

Reference: 

Mortimer, J.A. et al. 2012. Changes in Brain Volume and Cognition in a Randomized Trial of Exercise and Social Interaction in a Community-Based Sample of Non-Demented Chinese Elders. Journal of Alzheimer's Disease, 30 (4), 757-766.
Full text available at http://health.usf.edu/nocms/publicaffairs/now/pdfs/JAD_Mortimer_30%28201...

Source: 

tags development: 

Topics: 

tags lifestyle: 

tags problems: 

tags: 

Old honeybees can regain youthful cognition when they return to youthful duties

August, 2012

A honey bee study shows how old foraging bees quickly start to decline cognitively, and how this can be reversed in some if they return to more social domestic duties in the hive.

I often talk about the importance of attitudes and beliefs for memory and cognition. A new honey bee study provides support for this in relation to the effects of aging on the brain, and suggests that this principle extends across the animal kingdom.

Previous research has shown that bees that stay in the nest and take care of the young remain mentally competent, but they don’t nurse for ever. When they’re older (after about 2-3 weeks), they become foragers, and foraging bees age very quickly — both physically and mentally. Obviously, you would think, bees ‘retire’ to foraging, and their old age is brief (they begin to show cognitive decline after just two weeks).

But it’s not as simple as that, because in artificial hives where worker bees are all the same age, nurse bees of the same age as foragers don’t show the same cognitive and sensory decline. Moreover, nurse bees have been found to maintain their cognitive abilities for more than 100 days, while foragers die within 18 days and show cognitive declines after 13-15 days (although their ability to assess sweetness remains intact).

The researchers accordingly asked a very interesting question: what happens if the foragers return to babysitting?

To achieve this, they removed all of the younger nurse bees from the nest, leaving only the queen and babies. When the older, foraging bees returned to the nest, activity slowed down for several days, and then they re-organized themselves: some of the old bees returned to foraging; others took on the babysitting and housekeeping duties (cleaning, building the comb, and tending to the queen). After 10 days, around half of these latter bees had significantly improved their ability to learn new things.

This cognitive improvement was also associated with a change in two specific proteins in their brains: one that has been associated with protection against oxidative stress and inflammation associated with Alzheimer disease and Huntington disease in humans (Prx6), and another dubbed a “chaperone” protein because it protects other proteins from being damaged when brain or other tissues are exposed to cell-level stress.

Precisely what it is about returning to the hive that produces this effect is a matter of speculation, but this finding does show that learning impairment in old bees can be reversed by changes in behavior, and this reversal is correlated with specific changes in brain protein.

Having said this, it shouldn’t be overlooked that only some of the worker bees showed this brain plasticity. This is not, apparently, due to differences in genotype, but may depend on the amount of foraging experience.

The findings add weight to the idea that social interventions can help our brains stay younger, and are consistent with growing evidence that, in humans, social engagement helps protect against dementia and age-related cognitive impairment.

The (probably) experience-dependent individual differences shown by the bees is perhaps mirrored in our idea of cognitive reserve, but with a twist. The concept of cognitive reserve emphasizes that accumulating a wealth of cognitive experience (whether through education or occupation or other activities) protects your brain from the damage that might occur with age. But perhaps (and I’m speculating now) we should also consider the other side of this: repeated engagement in routine or undemanding activities may have a deleterious effect, independent of and additional to the absence of more stimulating activities.

Reference: 

Source: 

Topics: 

tags problems: 

tags strategies: 

tags: 

tags development: 

tags memworks: 

Computer use and exercise combo reduce odds of MCI

June, 2012

Engaging in both moderate exercise and cognitively stimulating activities has an additive effect in reducing your risk of becoming cognitively impaired.

More findings from the long-running Mayo Clinic Study of Aging reveal that using a computer plus taking moderate exercise reduces your risk of mild cognitive impairment significantly more than you would expect from simply adding together these two beneficial activities.

The study involved 926 older adults (70-93), of whom 109 (12%) were diagnosed with MCI. Participants completed questionnaires on physical exercise and mental stimulation within the previous year. Computer use was targeted in this analysis because of its popularity as a cognitive activity, and because it was particularly associated with reduced odds of having MCI.

Among the cognitively healthy, only 20.1% neither exercised moderately nor used a computer, compared to 37.6% of those with MCI. On the other hand, 36% of the cognitively healthy both exercised and used a computer, compared to only 18.3% of those with MCI. There was little difference between the two groups as regards exercise but no computer use, or computer use but no exercise.

The analysis took into account calorie intake, as well as education, depression, and other health factors. Daily calorie intake was significantly higher in those with MCI compared to those without (respective group medians of 2100 calories vs 1802) — note that the median BMI was the same for the two groups.

Moderate physical exercise was defined as brisk walking, hiking, aerobics, strength training, golfing without a golf cart, swimming, doubles tennis, yoga, martial arts, using exercise machines and weightlifting. Light exercise included activities such as bowling, leisurely walking, stretching, slow dancing, and golfing with a cart. Mentally stimulating activities included reading, crafts, computer use, playing games, playing music, group and social and artistic activities and watching less television.

It should be noted that the assessment of computer activities was very basic. The researchers suggest that in future studies, both duration and frequency should be assessed. I would add type of activity, although that would be a little more difficult to assess.

Overall, the findings add yet more weight to the evidence for the value of physical exercise and mental stimulation in staving off cognitive impairment in old age, and add the twist that doing both is much better than doing either one alone.

Reference: 

Source: 

tags development: 

Topics: 

tags lifestyle: 

tags problems: 

tags: 

Does early retirement dull your brain?

November, 2010

A very large cross-country comparison of U.S. and European countries reveals a correlation between lower average scores on a simple memory test and higher rates of retirement among 60-64 year olds.

Do retired people tend to perform more poorly on cognitive tests than working people because you’re more likely to retire if your mental skills are starting to decline, or because retirement dulls the brain?

For nearly 20 years the United States has surveyed more than 22,000 Americans over age 50 every two years, and administered memory tests. A similar survey has also been taking place in Europe. A comparison of the 2004 data for the U.S., England, and eleven European countries (Austria, Belgium, Denmark, France, Germany, Greece, Italy, The Netherlands, Spain, Sweden, and Switzerland) has now revealed differences in the level of cognitive performance among older adults between the countries (the 60-64 year age group was used as it represents the greatest retirement-age difference between nations).

These differences show some correlation with differences in the age of retirement. Moreover, the differences also correlate to differences in government policy in terms of pensions — supporting the view that it is retirement that is causing the mental decline, not the decline that brings about early retirement.

Memory was tested through a simple word recall task — recalling a list of 10 nouns immediately and 10 minutes later. People in the United States did best, with an average score of 11 out of a possible 20. Those in England were very close behind, and Denmark and Sweden were both around 10. Switzerland, Germany and the Netherlands, and Austria were all clustered between 9 and 9 ½; Belgium and Greece a little lower. France averaged 8; Italy 7; Spain (the lowest) just over 6.

Now when the average cognitive score is mapped against the percentage of retired for 60-64 year olds, the points for each country (with one exception) cluster around a line with a slope of -5, indicating that there is a systematic relationship between these two variables, and that on average being retired is associated with a lower memory score of about 5 points on a 20-point scale. This is a very large effect.

But the correlation is not (unsurprisingly) exact. Although the top scorers, U.S., England and Denmark, are among those nations who have lower retirement rates at this age, Switzerland has the same levels as the U.S., and Sweden has the fewest retired of all (around 40% compared to around 47% for the U.S. and Switzerland). Most interesting of all, why does Spain, which has around 74% retired, show such a low cognitive score, when five other countries have even higher rates of retirement (Austria has over 90% retired)?

There are of course many other differences between the countries. One obvious one to look at would be the degree to which older people who are not working for pay are involved in voluntary work. There’s also the question of the extent to which different countries might have different occupation profiles, assuming that some occupations are more mentally stimulating than others, and the degree to which retired people are engaged in other activities, such as hobbies and clubs.

The paper also raises an important point, namely, that retirement may be preceded by years of ‘winding-down’, during which workers become progressively more reluctant to keep up with changes in their field, and employers become increasingly reluctant to invest in their training.

Reference: 

[1932] Rohwedder S, Willis RJ. Mental Retirement. Journal of Economic Perspectives [Internet]. 2010 ;24(1):119 - 138. Available from: http://www.aeaweb.org/articles.php?doi=10.1257/jep.24.1.119

Source: 

tags: 

Topics: 

tags problems: 

tags development: 

Career choice may determine where frontotemporal dementia begins

October, 2010

An international review of patients with frontotemporal dementia has revealed that the area of the brain first affected tends to be the hemisphere least used in the individual’s occupation.

A review of brain imaging and occupation data from 588 patients diagnosed with frontotemporal dementia has found that among the dementias affecting those 65 years and younger, FTD is as common as Alzheimer's disease. The study also found that the side of the brain first attacked (unlike Alzheimer’s, FTD typically begins with tissue loss in one hemisphere) is influenced by the person’s occupation.

Using occupation scores that reflect the type of skills emphasized, they found that patients with professions rated highly for verbal skills, such as school principals, had greater tissue loss on the right side of the brain, whereas those rated low for verbal skills, such as flight engineers, had greater tissue loss on the left side of the brain. This effect was expressed most clearly in the temporal lobes of the brain. In other words, the side of the brain least used in the patient's professional life was apparently the first attacked.

These findings are in keeping with the theory of cognitive reserve, but may be due to some asymmetry in the brain that both inclines them to a particular occupational path and renders the relatively deficient hemisphere more vulnerable in later life.

Reference: 

Source: 

Topics: 

tags problems: 

tags strategies: 

tags: 

tags development: 

tags memworks: 

Larger head size may protect against Alzheimer's symptoms

August, 2010

Another study finding larger head size helps protect people with Alzheimer’s brain damage from cognitive impairment.

Confirming previous research, a study involving 270 Alzheimer’s patients has found that larger head size was associated with better performance on memory and thinking tests, even when there was an equivalent degree of brain damage. The findings are consistent with the theory of cognitive reserve. They also point to the importance of brain development early in life, since the brain reaches 93% of its final size at age six, and while partly determined by genes, brain growth is also influenced by nutrition, infections, and brain injuries.

Reference: 

Source: 

tags development: 

Topics: 

tags problems: 

tags strategies: 

tags: 

Cognitive activity protects against age-related decline

January, 2010

A large study has found evidence that frequent cognitive activity can counteract the detrimental effect of poor education on at least one aspect of age-related cognitive decline -- episodic memory.

A study (“Midlife in the United States”) assessing 3,343 men and women aged 32-84 (mean age 56), of whom almost 40% had at least a 4-year college degree, has found evidence that frequent cognitive activity can counteract the detrimental effect of poor education on age-related cognitive decline. Although, as expected, those with higher education engaged in cognitive activities more often and did better on the memory tests, those with lower education who engaged in reading, writing, attending lectures, doing word games or puzzles once or week or more had memory scores similar to people with more education on tests of episodic memory (although this effect did not occur for executive functioning).

Reference: 

[651] Lachman ME, Agrigoroaei S, Murphy C, Tun PA. Frequent cognitive activity compensates for education differences in episodic memory. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry [Internet]. 2010 ;18(1):4 - 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20094014

Source: 

tags development: 

Topics: 

tags memworks: 

tags problems: 

tags: 

Subscribe to RSS - mental stimulation