Stress & anxiety

Latest Research News

Can you help protect yourself from the memory of traumatic events? A new study suggests that, by concentrating on concrete details as you live through the event, you can reduce the number of intrusive memories later experienced.

The study, aimed particularly at those who deliberately expose themselves to the risk of PTSD (e.g., emergency workers, military personnel, journalists in conflict zones), involved 50 volunteers who rated their mood before watching several films with traumatic scenes. After the first film, they rated their feelings. For the next four films, half the participants were asked to consider abstract questions, such as why such situations happened. The other half were asked to consider concrete questions, such as what they could see and hear and what needed to be done from that point. Afterward, they gave another rating on their mood. Finally, they were asked to watch a final film in the same way as they had practiced, rating feelings of distress and horror as they had for the first film.

The volunteers were then given a diary to record intrusive memories of anything they had seen in the films for the next week.

Both groups, unsurprisingly, saw their mood decline after the films, but those who had been practicing concrete thinking were less affected, and also experienced less intense feelings of distress and horror when watching the final film. Abstract thinkers experienced nearly twice as many intrusive memories in the following week.

The study follows previous findings that emergency workers who adopted an abstract processing approach showed poorer coping, and that those who processed negative events using abstract thinking experienced a longer period of low mood, compared to those using concrete thinking.

Further study to confirm this finding is of course needed in real-life situations, but this does suggest a strategy that people who regularly experience trauma could try. It is particularly intriguing because, on the face of it, it would seem like quite the wrong strategy. Distancing yourself from the trauma you're experiencing, trying to see it as something less real, seems a more obvious coping strategy. This study suggests it is exactly the wrong thing to do.

It also seems likely that this tendency to use concrete or abstract processing may reflect a more general trait. Self-reported proneness to intrusive memories in everyday life was significantly correlated with intrusive memories of the films. Perhaps we should all think about the way we view the world, and those of us who tend to take a more abstract approach should try paying more attention to concrete details. This is, after all, something I've been recommending in the context of fighting sensory impairment and age-related cognitive decline!

Abstract thinking certainly has its place, but as I've said before, we need flexibility. Effective cognitive management is about tailoring your style of thinking to the task's demands.

http://www.eurekalert.org/pub_releases/2016-05/uoo-tdc050516.php

A study involving both mice and human cells adds to evidence that stress is a risk factor for Alzheimer's.

The study found that mice who were subjected to acute stress had more amyloid-beta protein in their brains than a control group. Moreover, they had more of a specific form of the protein, one that has a particularly pernicious role in the development of Alzheimer's disease.

When human neurons were treated with the stress hormone corticotrophin releasing factor (CRF), there was also a significant increase in the amyloid proteins.

It appears that CRF causes the enzyme gamma secretase to increase its activity. This produces more amyloid-beta.

The finding supports the idea that reducing stress is one part of reducing your risk of developing Alzheimer's.

A neurotic personality increases the risk of Alzheimer's disease

An interesting study last year supports this.

The study, involving 800 women who were followed up some 40 years after taking a personality test, found that women who scored highly in "neuroticism" in middle age, have a greater chance of later developing Alzheimer's. People who have a tendency to neuroticism are more readily worried, distressed, and experience mood swings. They often have difficulty in managing stress.

The women, aged 38 to 54, were first tested in 1968, with subsequent examinations in 1974, 1980, 1992, 2000, and 2005. Neuroticism and extraversion were assessed in 1968 using the Eysenck Personality Inventory. The women were asked whether they had experienced long periods of high stress at each follow-up.

Over the 38 years, 153 developed dementia (19%), of whom 104 were diagnosed with Alzheimer's (13% of total; 68% of those with dementia).

A greater degree of neuroticism in midlife was associated with a higher risk of Alzheimer's and long-standing stress. This distress accounted for a lot of the link between neuroticism and Alzheimer's.

Extraversion, while associated with less chronic stress, didn't affect Alzheimer's risk. However, high neuroticism/low extraversion (shy women who are easily worried) was associated with the highest risk of Alzheimer's.

The finding supports the idea that long periods of stress increase the risk of Alzheimer's, and points to people with neurotic tendencies, who are more sensitive to stress, as being particularly vulnerable.

http://www.eurekalert.org/pub_releases/2015-09/uof-uhr091615.php

http://www.eurekalert.org/pub_releases/2014-10/uog-anp101414.php

A study that followed 800 Swedish middle-aged women from 1968 to 2005 has found that high levels of stress in middle age increased Alzheimer’s risk by 21% and risk of any dementia by 15%.

Of the 800 women, 425 died during the course of the study while 153 (19%) developed dementia (of whom 104 developed Alzheimer’s), at an average age of 78. The number of stressors and long-standing distress were independently associated with Alzheimer’s.

The finding doesn’t tell us whether stress is contributing to the development of dementia, or whether it is simply an indicator of another underlying risk factor.

http://www.theguardian.com/society/2013/sep/30/stress-middle-age-women-dementia

The open access paper is available at http://bmjopen.bmj.com/content/3/9/e003142.abstract.

While it’s well-established that chronic stress has all sorts of harmful effects, including on memory and cognition, the judgment on brief bouts of acute stress has been more equivocal. There is a certain amount of evidence that brief amounts of stress can be stimulating rather than harmful, and perhaps even necessary if we are to reach our full potential.

A recent rat study has found that brief stressful events caused stem cells in the hippocampus to proliferate into new neurons that, when mature two weeks later, improved the rats’ mental performance. But note that their performance took time to improve — there was no benefit only two days after.

Chronic stress also impacts the creation of new neurons, but in the opposite direction — it suppresses neurogenesis. The difference probably lies in how long the stress hormones remain elevated. Previous research modeling PTSD in rodents has found that severity and length are crucial variables.

This new study shows that higher levels of stress hormone initially increase the production of new neurons in response to the release of a protein, fibroblast growth factor 2 (FGF2), but these need time to develop. Interestingly, FGF2 deficiency has been linked to depression, and depression is also known to be associated with a reduction in neurogenesis.

http://www.futurity.org/health-medicine/a-little-stress-can-make-brains-sharper/

[3379] Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, Kaufer D. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. eLife [Internet]. 2013 ;2:e00362 - e00362. Available from: http://elife.elifesciences.org/lookup/doi/10.7554/eLife.00362

Full text available at http://elife.elifesciences.org/content/2/e00362

"The general consensus is that math anxiety doesn't affect children much before fourth grade.” New research contests that.

Study 1: found many first grade students do experience negative feelings and worry related to math. This math anxiety negatively affects their math performance when it comes to solving math problems in standard arithmetic notation.

Study 2: found that second grade math anxiety affected second grade computations and math applications. Additionally, children with higher levels of math anxiety in second grade learned less math in third grade.

"Students are walking into classrooms at five and six-years-old saying that they aren't good at math before they've even stepped into a math classroom.”

http://phys.org/news/2013-03-math-anxiety-fourth-grade-early.html

Vukovic, R.K. et al. (in press) Mathematics Anxiety in Young Children. Journal of Experimental Education

[3322] Vukovic RK, Kieffer MJ, Bailey SP, Harari RR. Mathematics anxiety in young children: Concurrent and longitudinal associations with mathematical performance. Contemporary Educational Psychology [Internet]. 2013 ;38(1):1 - 10. Available from: http://www.sciencedirect.com/science/article/pii/S0361476X12000471

The issue of ‘chemo-brain’ — cognitive impairment following chemotherapy — has been a controversial one. While it is now (I hope) accepted by most that it is, indeed, a real issue, there is still an ongoing debate over whether the main cause is really the chemotherapy. A new study adds to the debate.

The study involved 28 women who received adjuvant chemotherapy for breast cancer, 37 who received radiotherapy, and 32 age-matched healthy controls. Brain scans while doing a verbal working memory task were taken before treatment and one month after treatment.

Women who underwent chemotherapy performed less accurately on the working memory task both before treatment and one month after treatment. They also reported a significantly higher level of fatigue. Greater fatigue correlated with poorer test performance and more cognitive problems, across both patient groups and at both times (although the correlation was stronger after treatment).

Both patient groups showed reduced function in the left inferior frontal gyrus, before therapy, but those awaiting chemotherapy showed greater impairment than those in the radiotherapy group. Pre-treatment difficulty in recruiting this brain region in high demand situations was associated with greater fatigue after treatment.

In other words, reduced working memory function before treatment began predicted how tired people felt after treatment, and how much their cognitive performance suffered. All of which suggests it is not the treatment itself that is the main problem.

But the fact that reduced working memory function precedes the fatigue indicates it’s not the fatigue that’s the main problem either. The researchers suggest that the main driver is level of worry —worry interfered with the task; level of worry was related to fatigue. And worry, as we know, can reduce working memory capacity (because it uses up part of it).

All of which is to say that support for cancer patients aimed at combating stress and anxiety might do more for ‘chemo-brain’ than anything else. In this context, I note also that there have been suggestions that sleep problems have also been linked to chemo-brain — a not unrelated issue!

Cimprich, B. et al. 2012. Neurocognitive impact in adjuvant chemotherapy for breast cancer linked to fatigue: A Prospective functional MRI study. Presented at the 2012 CTRC-AACR San Antonio Breast Cancer Symposium, Dec. 4-8

There's quite a bit of evidence now that socializing — having frequent contact with others — helps protect against cognitive impairment in old age. We also know that depression is a risk factor for cognitive impairment and dementia. There have been hints that loneliness might also be a risk factor. But here’s the question: is it being alone, or feeling lonely, that is the danger?

A large Dutch study, following 2173 older adults for three years, suggests that it is the feeling of loneliness that is the main problem.

At the start of the study, some 46% of the participants were living alone, and some 50% were no longer or never married (presumably the discrepancy is because many older adults have a spouse in a care facility). Some 73% said they had no social support, while 20% reported feelings of loneliness.

Those who lived alone were significantly more likely to develop dementia over the three year study period (9.3% compared with 5.6% of those who lived with others). The unmarried were also significantly more likely to develop dementia (9.2% vs 5.3%).

On the other hand, among those without social support, 5.6% developed dementia compared with 11.4% with social support! This seems to contradict everything we know, not to mention the other results of the study, but the answer presumably lies in what is meant by ‘social support’. Social support was assessed by the question: Do you get help from family, neighbours or home support? It doesn’t ask the question of whether help would be there if they needed it. So this is not a question of social networks, but more one of how much you need help. This interpretation is supported by the finding that those receiving social support had more health problems.

So, although the researchers originally counted this question as part of the measure of social isolation, it is clearly a poor reflection of it. Effectively, then, that leaves cohabitation and marriage as the only indices of social isolation, which is obviously inadequate.

However, we still have the interesting question re loneliness. The study found that 13.4% of those who said they felt lonely developed dementia compared with 5.7% of those who didn’t feel this way. This is a greater difference than that found with the ‘socially isolated’ (as measured!). Moreover, once other risk factors, such as age, education, and other health factors, were accounted for, the association between living alone and dementia disappeared, while the association with feelings of loneliness remained.

Of course, this still doesn’t tell us what the association is! It may be that feelings of loneliness simply reflect cognitive changes that precede Alzheimer’s, but it may be that the feelings themselves are decreasing cognitive and social activity. It may also be that those who are prone to such feelings have personality traits that are in themselves risk factors for cognitive impairment.

I would like to see another large study using better metrics of social isolation, but, still, the study is interesting for its distinction between being alone and feeling lonely, and its suggestion that it is the subjective feeling that is more important.

This is not to say there is no value in having people around! For a start, as discussed, the measures of social isolation are clearly inadequate. Moreover, other people play an important role in helping with health issues, which in turn greatly impact cognitive decline.

Although there was a small effect of depression, the relationship between feeling lonely and dementia remained after this was accounted for, indicating that this is a separate factor (on the other hand feelings of loneliness were a risk factor for depression).

A decrease in cognitive score (MMSE) was also significantly greater for those experiencing feelings of loneliness, suggesting that this is also a factor in age-related cognitive decline.

The point is not so much that loneliness is more detrimental than being alone, but that loneliness in itself is a risk factor for cognitive decline and dementia. This suggests that we should develop a better understanding of loneliness, how to identify the vulnerable, and how to help them.

There have been a number of studies in the past few years showing how poverty affects brain development and function. One of these showed specifically that children of high and low socioeconomic status showed differences in brain wave patterns associated with an auditory selective attention task. This was thought to indicate that the groups were using different mechanisms to carry out the task, with the lower SES children employing extra resources to attend to irrelevant information.

In a follow-up study, 28 young adolescents (12-14 years) from two schools in neighborhoods of different socioeconomic status answered questions about their emotional and motivational state at various points during the day, and provided saliva samples to enable monitoring of cortisol levels. At one point in the afternoon, they also had their brainwaves monitored while they carried out an auditory selective attention task (hearing different sounds played simultaneously into both ears, they were required to press a button as fast as possible when they heard one particular sound).

While performance on the task was the same for both groups, there were, once again, differences in the brain wave patterns. Higher SES children exhibited far larger theta waves in the frontal lobes in response to sounds they attended to than to compared to those they should have ignored, while lower SES children showed much larger theta waves to the unattended sounds than for the attended sounds.

While the lower SES children had higher cortisol levels throughout the school day, like the higher SES children, they showed little change around the task, suggesting neither group was particularly stressed by the task. Both groups also showed similar levels of boredom and motivation.

What the findings suggest is that lower SES children have to exert more cognitive control to avoid attending to irrelevant stimuli than higher SES children — perhaps because they live in more threatening environments.

Cancer survivors who underwent chemotherapy often suffer long-term cognitive problems. Until now, most research has been occupied with establishing that this is in fact the case, and studies investigating how to help have been rare. I recently reported on studies suggesting that help with sleep problems and stress can be beneficial. It has also been suggested that exercise can help. None of these suggestions are special to cancer survivors (although cancer survivors may well be one of several groups that derive particular benefit). Similarly, a new study investigates another familiar approach to improving cognitive decline.

The pilot study involved 82 post-menopausal breast cancer survivors (average age 56) who had received chemotherapy and who were worried about their cognitive abilities. The women were randomly assigned to one of three groups: one group received memory training adapted from the ACTIVE (Advanced Cognitive Training for Independent and Vital Elderly) trial; another received processing speed training using Posit Science’s Insight program (commercially available); the third was a wait-listed control group.

Training consisted of ten 1-hour small-group (3-5 people) sessions over 6-8 weeks. Memory training involved learning strategies and applying them to word lists, sequences, and texts. Strategies included mnemonic techniques, as well as instruction in principles of meaningfulness, organization, visualization, and association. Strategies were taught and practiced in the first five sessions, and further practiced in the remaining sessions.

In the Insight program, stimulus duration is progressively shortened during a series of progressively more difficult information-processing tasks, such as time-order judgment, discrimination, spatial-match, forward-span, instruction-following, and narrative-memory tasks. Exercises automatically adjust to maintain an 85% correct rate.

Both programs proved beneficial. The memory training group showed significant improvement in immediate and delayed memory, which was maintained at the two-month follow-up. There was of course individual variability: 39% showed significant improvement on immediate memory (compared to 18% of controls) and 42% on delayed memory (compared to 11% of controls). While the group as a whole didn’t show significant improvement in processing speed, some 73% of the group showed reliable improvement at the two-month follow-up.

The Insight group showed significant improvement on both memory and processing speed. Some 68% improved processing speed (compared to 43% of controls). But note that at the 2-month follow-up, the 67% of the Insight group is not that much greater than the 61% of the controls (demonstrating very clearly the benefits of even the small amount of practice received in testing) and is in fact less than the 73% of the memory group.

The Insight group also showed significant improvement in memory. At two-month follow-up, some 30% of the Insight group had improved immediate memory (compared to the 18% of controls), and 33% had improved delayed memory (vs 11%).

Both training programs had a positive effect on perceived cognitive functioning and symptom distress (mood, anxiety, fatigue), and there was no difference between the groups in terms of satisfaction with the training (both groups were very satisfied).

The researchers concluded that, while both training programs were promising, the dual effect of processing speed training (on memory as well as processing speed) argued for its broader benefits.

However, I note that, although the size of the effect of memory training on processing speed was too small to reach statistical significance, the fact that the number of participants showing reliable improvement was greater than that of the Insight group points to an equally broad effect of memory training. If the memory training was supplemented by a small amount of practice on tasks designed to boost processing speed, it would seem to me that this might produce greater cognitive benefits than the processing speed training. Indeed, the Insight program was, I believe, first developed in the context of the ACTIVE program, and I have, of course, talked before about the value of training that includes multiple domains.

Still, the main message of this study should not be overlooked: it demonstrates that many cancer survivors suffering from cognitive decline can improve their cognitive performance through training and practice.

Stress is a major cause of workplace accidents, and most of us are only too familiar with the effects of acute stress on our thinking. However, although the cognitive effects are only too clear, research has had little understanding of how stress has this effect. A new rat study sheds some light.

In the study, brain activity was monitored while five rats performed a working memory task during acute noise stress. Under these stressful conditions, the rats performed dramatically worse on their working memory task, with performance dropping from an average of 93% success to 65%.

The stress also significantly increased the discharge rate of a subset of neurons in the medial prefrontal cortex during two phases of the task: planning and assessment.

This brain region is vital for working memory and executive functions such as goal maintenance and emotion regulation. The results suggest that the firing and re-firing of these neurons keeps recent information ‘fresh’. When the re-firing is delayed, the information can be lost.

What seems to be happening is that the stress is causing these neurons to work even more furiously, but instead of performing their normal task — concentrating on keeping important information ‘alive’ during brief delays — they are reacting to all the other, distracting and less relevant, stimuli.

The findings contradict the view that stress simply suppresses prefrontal cortex activity, and suggests a different approach to treatment, one that emphasizes shutting out distractions.

The findings are also exciting from a theoretical viewpoint, suggesting as they do that this excitatory recursive activity of neurons within the prefrontal cortex provide the neural substrate for working memory. That is, that we ‘hold’ information in the front of our mind through reverberating feedback loops within this network of neurons, that keep information alive during the approximately 1.5 seconds of our working memory ‘span’.

We know that stress has a complicated relationship with learning, but in general its effect is negative, and part of that is due to stress producing anxious thoughts that clog up working memory. A new study adds another perspective to that.

The brain scanning study involved 60 young adults, of whom half were put under stress by having a hand immersed in ice-cold water for three minutes under the supervision of a somewhat unfriendly examiner, while the other group immersed their hand in warm water without such supervision (cortisol and blood pressure tests confirmed the stress difference).

About 25 minutes after this (cortisol reaches peak levels around 25 minutes after stress), participants’ brains were scanned while participants alternated between a classification task and a visual-motor control task. The classification task required them to look at cards with different symbols and learn to predict which combinations of cards announced rain and which sunshine. Afterward, they were given a short questionnaire to determine their knowledge of the task. The control task was similar but there were no learning demands (they looked at cards on the screen and made a simple perceptual decision).

In order to determine the strategy individuals used to do the classification task, ‘ideal’ performance was modeled for four possible strategies, of which two were ‘simple’ (based on single cues) and two ‘complex’ (based on multiple cues).

Here’s the interesting thing: while both groups were successful in learning the task, the two groups learned to do it in different ways. Far more of the non-stressed group activated the hippocampus to pursue a simple and deliberate strategy, focusing on individual symbols rather than combinations of symbols. The stressed group, on the other hand, were far more likely to use the striatum only, in a more complex and subconscious processing of symbol combinations.

The stressed group also remembered significantly fewer details of the classification task.

There was no difference between the groups on the (simple, perceptual) control task.

In other words, it seems that stress interferes with conscious, purposeful learning, causing the brain to fall back on more ‘primitive’ mechanisms that involve procedural learning. Striatum-based procedural learning is less flexible than hippocampus-based declarative learning.

Why should this happen? Well, the non-conscious procedural learning going on in the striatum is much less demanding of cognitive resources, freeing up your working memory to do something important — like worrying about the source of the stress.

Unfortunately, such learning will not become part of your more flexible declarative knowledge base.

The finding may have implications for stress disorders such as depression, addiction, and PTSD. It may also have relevance for a memory phenomenon known as “forgotten baby syndrome”, in which parents forget their babies in the car. This may be related to the use of non-declarative memory, because of the stress they are experiencing.

[3071] Schwabe L, Wolf OT. Stress Modulates the Engagement of Multiple Memory Systems in Classification Learning. The Journal of Neuroscience [Internet]. 2012 ;32(32):11042 - 11049. Available from: http://www.jneurosci.org/content/32/32/11042

In the light of a general increase in caesarean sections, it’s somewhat alarming to read about a mouse study that found that vaginal birth triggers the expression of a protein in the brains of newborns that improves brain development, and this protein expression is impaired in the brains of those delivered by C-section.

The protein in question —mitochondrial uncoupling protein 2 (UCP2) — is important for the development of neurons and circuits in the hippocampus. Indeed, it has a wide role, being involved in regulation of fuel utilization, mitochondrial bioenergetics, cell proliferation, neuroprotection and synaptogenesis. UCP2 is induced by cellular stress.

Among the mice, natural birth triggered UCP2 expression in the hippocampus (presumably because of the stress of the birth), which was reduced in those who were born by C-section. Not only were levels of UCP2 lower in C-section newborns, they continued to be lower through to adulthood.

Cell cultures revealed that inhibiting UCP2 led to decreased number of neurons, neuron size, number of dendrites, and number of presynaptic clusters. Mice with (chemically or genetically) inhibited UCP2 also showed behavioral differences indicative of greater levels of anxiety. They explored less, and they showed poorer spatial memory.

The effects of reduced UCP2 on neural growth means that factors that encourage the growth of new synapses, such as physical exercise, are likely to be much less useful (if useful at all). Could this explain why exercise seems to have no cognitive benefits for a small minority? (I’m speculating here.)

Although the researchers don’t touch on this (naturally enough, since this was a laboratory study), I would also speculate that, if the crucial factor is stress during the birth, this finding applies only to planned C-sections, not to those which become necessary during the course of labor.

UCP2 is also a critical factor in fatty acid utilization, which has a flow-on effect for the creation of new synapses. One important characteristic of breast milk is its high content of long chain fatty acids. It’s suggested that the triggering of UCP2 by natural birth may help the transition to breastfeeding. This in turn has its own benefits for brain development.

Meditation may improve multitasking

I recently reported that developing skill at video action games doesn’t seem to improve general multitasking ability, but perhaps another approach might be more successful. Meditation has, of course, been garnering growing evidence that it can help improve attentional control. A new study extends that research to multitasking in a realistic work setting.

The study involved three groups of 12-15 female human resource managers, of whom one group received eight weeks of mindfulness-based meditation training, another received eight weeks of body relaxation training, and another initially received no training (control), before receiving the mindfulness training after the eight weeks.

Before and after each eight-week period, the participants were given a stressful test of their multitasking abilities, requiring them to use email, calendars, instant-messaging, telephone and word-processing tools to perform common office tasks (scheduling a meeting; finding a free conference room; writing a draft announcement of the meeting, eating snacks and drinking water, writing a memo proposing a creative agenda item for the meeting). Necessary information came from emails, instant messages, telephone calls, and knocks on the door. The participants had 20 minutes to complete the tasks.

The meditation group reported lower levels of stress during the multitasking test compared to the control and relaxation groups. They also spent more time on tasks and switched tasks less often, while taking no longer to complete the overall job than the others. Both meditation and relaxation groups showed improved memory for the tasks they were performing.

After the control group underwent the meditation training, their results matched those of the meditation group.

The meditation training emphasized:

  • control of attentional focus
  • focusing attention in the present moment or task
  • switching focus
  • breath and body awareness.

The relaxation training emphasized progressive tensing and relaxing of major muscle groups, aided by relaxation imagery.

It's interesting that overall time on task didn't change (the researchers remarked that the meditators didn't take any longer, but of course most of us would be looking for it to become shorter!), but I wouldn't read too much into it. The task was relatively brief. It would be interesting to see the effects over the course of, say, a day. Nor did the study look at how well the tasks were done.

But it is, of course, important that meditation training reduced task-switching and stress. Whether it also has a postitive effect on overall time and quality of work is a question for another day.

IBMT improves white matter efficiency

A recent imaging study has found that four weeks of a form of mindfulness meditation called integrative body–mind training (IBMT) improved white matter efficiency in areas surrounding the anterior cingulate cortex, compared to controls given relaxation training.

The anterior cingulate is part of the brain network related to self-regulation. Deficits in activation in this part of the brain have been associated with attention deficit disorder, dementia, depression, schizophrenia, and other disorders.

Using the data from a 2010 study involving 45 U.S. college students, and another involving 68 Chinese students, researchers found that axon density (one factor in white matter efficiency) had improved after two weeks, but not myelin formation. After a month (about 11 hours of meditation), both had improved. Mood improved by two weeks.

Previous studies involving computer-based training for improving working memory have found changes in myelination, but not axon density.

Meditators’ better cognitive control may be rooted in emotional regulation

Previous work has found that people who engage in meditation show higher levels of executive control on laboratory tasks.

An electrical signal called the Error Related Negativity (ERN) occurs in the brain within 100 ms of an error being committed. When meditators and non-meditators were given the Stroop Test, meditators not only tended to do better on the test, but their ERNs were stronger.

The interesting thing about this is that the best performers were those who scored highest on emotional acceptance. Mindful awareness was less important. It’s suggested that meditators may be able to control their behavior better not because of their sharper focus, but because they are more aware of their emotions and regulate them better.

Something to think about!

Levy, D. M., Wobbrock, J. O., Kaszniak, A. W., & Ostergren, M. (2012). The Effects of Mindfulness Meditation Training on Multitasking in a High-Stress Information Environment, 45–52. Full text available at http://faculty.washington.edu/wobbrock/pubs/gi-12.02.pdf

[3051] Tang Y-Y, Lu Q, Fan M, Yang Y, Posner MI. Mechanisms of white matter changes induced by meditation. Proceedings of the National Academy of Sciences [Internet]. 2012 ;109(26):10570 - 10574. Available from: http://www.pnas.org/content/109/26/10570

[3052] Teper R, Inzlicht M. Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring. Social Cognitive and Affective Neuroscience [Internet]. 2012 . Available from: http://scan.oxfordjournals.org/content/early/2012/05/13/scan.nss045

Dementia is a progressive illness, and its behavioral and psychological symptoms are, for caregivers, the most difficult symptoms to manage. While recent research has demonstrated how collaborative care can reduce these symptoms and reduce stress for caregivers, the model requires continuous monitoring of the symptoms. What’s needed is a less arduous way of monitoring changes in symptoms.

A new questionnaire for assessing dementia progression has now been validated. The Healthy Aging Brain Care Monitor is simple, user-friendly and sensitive to change in symptoms. Its 31 items cover cognitive, functional, and behavioral and psychological symptoms of the patient, as well as caregiver quality of life, and takes about six minutes for a caregiver to complete.

Some of the specific items that may be of interest include:

  • Repeating the same things over and over
  • Forgetting the correct month or year
  • Handling finances
  • Planning, preparing or serving meals
  • Learning to use a tool, appliance, or gadget

You can see the full questionnaire at http://www.indydiscoverynetwork.org/HealthyAgingBrainCareMonitor.html. The HABC Monitor and scoring rules are available without charge.

The four factors (cognitive; functional; behavioral and psychological; caregiver quality of life) were all significantly correlated, with one exception: cognitive and caregiver quality of life.

The validating study involved 171 caregivers, of whom 52% were the children of the patients, 34% were spouses, 6% were siblings, and 4% were grandchildren. The participant group included 61% identifying as white, 38% African-American, and 1% other. Only 1% was Hispanic.

The study found good internal consistency (0.73–0.92); good correlations with the longer and more detailed Neuropsychiatric Inventory (NPI) total score and NPI caregiver distress score; and greater sensitivity to three-month change compared with NPI “reliable change” groups.

The value of this new clinical tool lies in its brevity. Described as a ‘blood pressure cuff’ for dementia symptoms, the one-page questionnaire is designed to fit into a health visit easily.

The researchers note some caveats, including the fact that it was validated in a memory care practice setting and not yet in a primary care setting, and (more importantly) only over a three-month period. Future projects will assess its sensitivity to change over longer periods, and in primary care.

I have reported previously on research suggesting that rapamycin, a bacterial product first isolated from soil on Easter Island and used to help transplant patients prevent organ rejection, might improve learning and memory. Following on from this research, a new mouse study has extended these findings by adding rapamycin to the diet of healthy mice throughout their life span. Excitingly, it found that cognition was improved in young mice, and abolished normal cognitive decline in older mice.

Anxiety and depressive-like behavior was also reduced, and the mice’s behavior demonstrated that rapamycin was acting like an antidepressant. This effect was found across all ages.

Three "feel-good" neurotransmitters — serotonin, dopamine and norepinephrine — all showed significantly higher levels in the midbrain (but not in the hippocampus). As these neurotransmitters are involved in learning and memory as well as mood, it is suggested that this might be a factor in the improved cognition.

Other recent studies have suggested that rapamycin inhibits a pathway in the brain that interferes with memory formation and facilitates aging.

A new study has found that, when delivered quickly, a modified form of prolonged exposure therapy reduces post-traumatic stress reactions and depression.

The study involved 137 patients being treated in the emergency room of a major trauma center in Atlanta. The patients were chosen from survivors of traumatic events such as rape, car or industrial accidents, and shooting or knife attacks. Participants were randomly assigned to either receive three sessions of therapy beginning in the emergency department (an average of 12 hours after the event), or assessment only. Stress reactions were assessed at 4 and 12 weeks, and depression at baseline and 4 weeks.

Those receiving the therapy reported significantly lower post-traumatic stress at 4 weeks and 12 weeks, and significantly lower depression at 4 weeks. Analysis of subgroups revealed that the therapy was most effective in rape victims. In the cases of transport accidents and physical (non-sexual) assault, the difference between therapy and assessment-only was only barely significant (for transport at 4 weeks) or non-significant. In both subgroups, the effect was decidedly less at 12 weeks than at 4 weeks.

The therapy, carried out by trained therapists, involved participants describing the trauma they had experienced while the therapist recorded the description. The bulk of the hour-long session was taken up with reliving and processing the experience. There were three sessions spaced a week apart. The patients were instructed to listen to their recordings every day, and 85% were compliant. The therapists also explained normal reactions to trauma, helped the patients look at obtrusive thoughts of guilt or responsibility, and taught them a brief breathing or relaxation technique and self care.

While this study doesn’t itself compare the effects of immediate vs delayed therapy, the assumption that delivering the therapy so soon after the trauma is a crucial factor in its success is in line with other research (mainly to do with fear-conditioning in rodent and human laboratory studies). Moreover, while brief cognitive-behavioral therapy has previously been shown to be effective with people diagnosed with acute stress disorder, such therapy is normally begun some 2-4 weeks after trauma, and a study of female assault survivors found that although such therapy did indeed accelerate recovery compared with supportive counseling, after 9 months, PTSD severity was similar in both groups.

Another, severe, limitation of this study is that the therapy involved multiple items. We cannot assume that it was the repeated re-experiencing of the event that is critical.

However, this study is only a pilot study, and its findings are instructive rather than decisive. But at the least it does support the idea that immediate therapy is likely to help victims of trauma recover more quickly.

One final, important, note: It should not, of course, be assumed that simply having the victim describe the events — say to police officers — is in itself therapeutic. Done badly, that experience may itself be traumatic.

A British study looking at possible gender differences in the effects of math anxiety involved 433 secondary school children (11-16 years old) completing customized (year appropriate) mental mathematics tests as well as questionnaires designed to assess math anxiety and (separately) test anxiety. These sources of anxiety are often confounded in research studies (and in real life!), and while they are indeed related, reported correlations are moderate, ranging from .30 to .50.

Previous research has been inconsistent as regards gender differences in math anxiety. While many studies have found significantly greater levels of math anxiety in females, many studies have found no difference, and some have even found higher levels in males. These inconsistencies may stem from differences in how math anxiety is defined or measured.

The present study looked at a rather more subtle question: does the connection between math anxiety and math performance differ by gender? Again, previous research has produced inconsistent findings.

Findings in this study were very clear: while there was no difference between boys and girls in math performance, there were marked differences in both math and test anxiety. Girls showed significantly greater levels of both. Both boys and girls showed a positive correlation between math anxiety and test anxiety, and a negative correlation between math anxiety and math performance, and test anxiety and performance. However, these relationships between anxiety and performance were stronger for girls than boys, with the correlation between test anxiety and performance being only marginally significant for boys (p<0.07), and the correlation between math anxiety and performance disappearing once test anxiety was controlled for.

In other words, greater math anxiety was linked to poorer math performance, but it was significant only for girls. Moreover, anxiety experienced by boys may simply reflect test anxiety, rather than specific math anxiety.

It is worth emphasizing that there was no gender difference in performance — that is, despite laboring under the burden of greater levels of anxiety, the girls did just as well as boys. This suggests that girls might do better than boys if they were free of anxiety. It is possible, however, that levels of anxiety didn’t actually differ between boys and girls — that the apparent difference stems from girls feeling more free to express their anxiety.

However, the finding that anxiety is greater in girls than boys is in line with evidence that anxiety (and worry in particular) is twice as prevalent in women as men, and more support for the idea that the girls are under-performing because of their anxiety comes from another recent study.

In this study, 149 college students performed a relatively simple task while their brain activity was measured. Specifically, they had to identify the middle letter in a series of five-letter groups. Sometimes the middle letter was the same as the other four ("FFFFF") while sometimes it was different ("EEFEE"). Afterward the students completed questionnaires about their anxiety and how much they worry (Penn State Worry Questionnaire and the Anxious Arousal subscale of the Mood and Anxiety Symptom Questionnaire).

Anxiety scores were significantly negatively correlated with accuracy on the task; worry scores were unrelated to performance.

Only girls who identified themselves as particularly anxious or big worriers recorded high brain activity when they made mistakes during the task (reflecting greater performance-monitoring). Although these women performed about the same as others on simple portions of the task, their brains had to work harder at it. Then, as the test became more difficult, the anxious females performed worse, suggesting worrying got in the way of completing the task.

Greater performance monitoring was not evident among anxious men.

[A reminder: these are group differences, and don't mean that all men or all women react in these ways.]

I’ve mentioned before that, for some few people, exercise doesn’t seem to have a benefit, and the benefits of exercise for fighting age-related cognitive decline may not apply to those carrying the Alzheimer’s gene.

New research suggests there is another gene variant that may impact on exercise’s effects. The new study follows on from earlier research that found that physical exercise during adolescence had more durable effects on object memory and BDNF levels than exercise during adulthood. In this study, 54 healthy but sedentary young adults (aged 18-36) were given an object recognition test before participating in either (a) a 4-week exercise program, with exercise on the final test day, (b) a 4-week exercise program, without exercise on the final test day, (c) a single bout of exercise on the final test day, or (d) remaining sedentary between test days.

Exercise both improved object recognition memory and reduced perceived stress — but only in one group: those who exercised for 4 weeks including the final day of testing. In other words, both regular exercise and recent exercise was needed to produce a memory benefit.

But there is one more factor — and this is where it gets really interesting — the benefit in this group didn’t happen for every member of the group. Only those carrying a specific genotype benefited from regular and recent exercise. This genotype has to do with the brain protein BDNF, which is involved in neurogenesis and synaptic plasticity, and which is increased by exercise. The BDNF gene comes in two flavors: Val and Met. Previous research has linked the less common Met variant to poorer memory and greater age-related cognitive decline.

In other words, it seems that the Met allele affects how much BDNF is released as a result of exercise, and this in turn affects cognitive benefits.

The object recognition test involved participants seeing a series of 50 images (previously selected as being highly recognizable and nameable), followed by a 15 minute filler task, before seeing 100 images (the previous 50 and 50 new images) and indicating which had been seen previously. The filler task involved surveys for state anxiety, perceived stress, and mood. On the first (pre-program) visit, a survey for trait anxiety was also completed.

Of the 54 participants, 31 carried two copies of the Val allele, and 23 had at least one Met allele (19 Val/Met; 4 Met/Met). The population frequency for carrying at least one Met allele is 50% for Asians, 30% in Caucasians, and 4% in African-Americans.

Although exercise decreased stress and increased positive mood, the cognitive benefits of exercise were not associated with mood or anxiety. Neither was genotype associated with mood or anxiety. However, some studies have found an association between depression and the Met variant, and this study is of course quite small.

A final note: this study is part of research looking at the benefits of exercise for children with ADHD. The findings suggest that genotyping would enable us to predict whether an individual — a child with ADHD or an older adult at risk of cognitive decline or impairment — would benefit from this treatment strategy.

A study involving 75 perimenopausal women aged 40 to 60 has found that those with memory complaints tended to show impairments in working memory and attention. Complaints were not, however, associated with verbal learning or memory.

Complaints were also associated with depression, anxiety, somatic complaints, and sleep disturbance. But they weren’t linked to hormone levels (although estrogen is an important hormone for learning and memory).

What this suggests to me is that a primary cause of these cognitive impairments may be poor sleep, and anxiety/depression. A few years ago, I reported on a study that found that, although women’s reports of how many hot flashes they had didn’t correlate with memory impairment, an objective measure of the number of flashes they experienced during sleep did. Sleep, as I know from personal experience, is of sufficient importance that my rule-of-thumb is: don’t bother looking for any other causes of attention and memory deficits until you have sorted out your sleep!

Having said that, depressive symptoms showed greater relationship to memory complaints than sleep disturbance.

It’s no big surprise to hear that it is working memory in particular that is affected, because what many women at this time of life complain of is ‘brain fog’ — the feeling that your brain is full of cotton-wool. This doesn’t mean that you can’t learn new information, or remember old information. But it does mean that these tasks will be impeded to the extent that you need to hold on to too many bits of information. So mental arithmetic might be more difficult, or understanding complex sentences, or coping with unexpected disruptions to your routine, or concentrating on a task for a long time.

These sorts of problems are typical of those produced by on-going sleep deprivation, stress, and depression.

One caveat to the findings is that the study participants tended to be of above-average intelligence and education. This would protect them to a certain extent from cognitive decline — those with less cognitive reserve might display wider impairment. Other studies have found verbal memory, and processing speed, impaired during menopause.

Note, too, that a long-running, large population study has found no evidence for a decline in working memory, or processing speed, in women as they pass through perimenopause and menopause.

The study involved 1,292 children followed from birth, whose cortisol levels were assessed at 7, 15, and 24 months. Three tests related to executive functions were given at age 3. Measures of parenting quality (maternal sensitivity, detachment, intrusiveness, positive regard, negative regard, and animation, during interaction with the child) and household environment (household crowding, safety and noise levels) were assessed during the home visits.

Earlier studies have indicated that a poor environment in and of itself is stressful to children, and is associated with increased cortisol levels. Interestingly, in one Mexican study, preschool children in poor homes participating in a conditional cash transfer scheme showed reduced cortisol levels.

This study found that children in lower-income homes received less positive parenting and had higher levels of cortisol in their first two years than children in slightly better-off homes. Higher levels of cortisol were associated with lower levels of executive function abilities, and to a lesser extent IQ, at 3 years.

African American children were more affected than White children on every measure. Cortisol levels were significantly higher; executive function and IQ significantly lower; ratings of positive parenting significantly lower and ratings of negative parenting significantly higher. Maternal education was significantly lower, poverty greater, homes more crowded and less safe.

The model derived from this data shows executive function negatively predicted by cortisol, while the effect on IQ is marginal. However, both executive function and IQ are predicted by negative parenting, positive parenting, and household risk (although this last variable has a greater effect on IQ than executive function). Neither executive function nor IQ was directly predicted by maternal education, ethnicity, or poverty level. Cortisol level was inversely related to positive parenting, but was not directly related to negative parenting or household risk.

Indirectly (according to this best-fit model), poverty was related to executive function through negative parenting; maternal education was related to executive function through negative parenting and to a lesser extent positive parenting; both poverty and maternal education were related to IQ through positive parenting, negative parenting, and household risk; African American ethnicity was related to executive function through negative parenting and positive parenting, and to IQ through negative parenting, positive parenting, and household risk. Cortisol levels were higher in African American children and this was unrelated to poverty level or maternal education.

Executive function (which includes working memory, inhibitory control, and attention shifting) is vital for self-regulation and central to early academic achievement. A link between cortisol level and executive function has previously been shown in preschool children, as well as adults. The association partly reflects the fact that stress hormone levels affect synaptic plasticity in the prefrontal cortex, where executive functions are carried out. This is not to say that this is the only brain region so affected, but it is an especially sensitive one. Chronic levels of stress alter the stress response systems in ways that impair flexible regulation.

What is important about this study is this association between stress level and cognitive ability at an early age, that the effect of parenting on cortisol is associated with positive aspects rather than negative ones, and that the association between poverty and cognitive ability is mediated by both cortisol and parenting behavior — both positive and negative aspects.

A final word should be made on the subject of the higher cortisol levels in African Americans. Because of the lack of high-income African Americans in the sample (a reflection of the participating communities), it wasn’t possible to directly test whether the effect is accounted for by poverty. So this remains a possibility. It is also possible that there is some genetic difference. But it also might reflect other sources of stress, such as that relating to prejudice and stereotype threat.

Based on mother’s ethnic status, 58% of the families were Caucasian and 42% African American. Two-thirds of the participants had an income-to-need ratio (estimated total household income divided by the 2005 federal poverty threshold adjusted for number of household members) less than 200% of poverty. Just over half of the mothers weren’t married, and most of them (89%) had never been married. The home visits at 7, 15, and 24 months lasted at least an hour, and include a videotaped free play or puzzle completion interaction between mother and child. Cortisol samples were taken prior to an emotion challenge task, and 20 minutes and 40 minutes after peak emotional arousal.

Long-term genetic effects of childhood environment

The long-term effects of getting off to a poor start are deeper than you might believe. A DNA study of forty 45-year-old males in a long-running UK study has found clear differences in gene methylation between those who experienced either very high or very low standards of living as children or adults (methylation of a gene at a significant point in the DNA reduces the activity of the gene). More than twice as many methylation differences were associated with the combined effect of the wealth, housing conditions and occupation of parents (that is, early upbringing) than were associated with the current socio-economic circumstances in adulthood (1252 differences as opposed to 545).

The findings may explain why the health disadvantages known to be associated with low socio-economic position can remain for life, despite later improvement in living conditions. The methylation profiles associated with childhood family living conditions were clustered together in large stretches of DNA, which suggests that a well-defined epigenetic pattern is linked to early socio-economic environment. Adult diseases known to be associated with early life disadvantage include coronary heart disease, type 2 diabetes and respiratory disorders.

[2589] Blair C, Granger DA, Willoughby M, Mills-Koonce R, Cox M, Greenberg MT, Kivlighan KT, Fortunato CK, the Investigators FLP. Salivary Cortisol Mediates Effects of Poverty and Parenting on Executive Functions in Early Childhood. Child Development [Internet]. 2011 :no - no. Available from: http://dx.doi.org/10.1111/j.1467-8624.2011.01643.x

Fernald, L. C., & Gunnar, M. R. (2009). Poverty-alleviation program participation and salivary cortisol in very low-income children. Social Science and Medicine, 68, 2180–2189.

[2590] Borghol N, Suderman M, McArdle W, Racine A, Hallett M, Pembrey M, Hertzman C, Power C, Szyf M. Associations with early-life socio-economic position in adult DNA methylation. International Journal of Epidemiology [Internet]. 2011 . Available from: http://ije.oxfordjournals.org/content/early/2011/10/18/ije.dyr147.abstract

When a middle-aged woman loses her memory after sex, it naturally makes the headlines. Many might equate this sort of headline to “Man marries alien”, but this is an example of a rare condition — temporary, you will be relieved to hear — known as transient global amnesia. Such abrupt, localized loss of autobiographical memory is usually preceded by strenuous physical activity or stressful events. It generally occurs in middle-aged or older adults, but has been known to occur in younger people. In those cases, there may be a history of migraine or head trauma.

Following an earlier study in which 29 of 41 TGA patients were found to have small lesions in the CA1 region of the hippocampus, scanning of another 16 TGA patients has revealed 14 had these same lesions. It seems likely that all the patients had such lesions, but because they are very small and don’t last long, they’re easy to miss. The lesion is best seen after 24-72 hours, but is gone after 5-6 days.

At the start of one of these attacks, memory for the first 30 years of life was significantly impaired, but still much better than memory for the years after that. There was a clear temporal gradient, with memory increasingly worse for events closer in time. There was no difference between events in the previous year and events in the previous five years, but a clear jump at that five-year point.

The exact location of the lesions was significant: when the lesion was in the anterior part of the region, memory for recent events was more impaired.

The hippocampus is known to be crucially involved in episodic memory (memory for events), and an integral part of the network for autobiographical memory. In recent years, it has come to be thought that such memories are only hosted temporarily by the hippocampus, and over a few years come to be permanently lodged in the neocortex (the standard consolidation model). Evidence from a number of studies of this change at the five-year mark has been taken as support for this theory. According to this, then, older memories should be safe from hippocampal damage.

An opposing theory, however, is that the hippocampus continues to be involved in such memories, with both the neocortex and the hippocampus involved in putting together reconsolidated memories (the multiple trace model). According to this model, each retrieval of an episodic memory creates a new version in the hippocampus. The more versions, the better protected a memory will be from any damage to the hippocampus.

The findings from this study show that while there is indeed a significant difference between older and more recent memories, the CA1 region of the hippocampus continues to be crucial for retrieving older memories, and for our sense of self-continuity.

Interestingly, some studies have also found a difference between the left and right hemispheres, with the right hippocampus showing a temporal gradient and the left hippocampus showing constant activation across all time periods. Such a hemisphere difference was not found in the present study. The researchers suggest that the reason may lie in the age of the participants (average age was 68), reflecting a reduction in hemispheric asymmetry with age.

There’s another message in this study. In these cases of TGA, memory function is restored within 24 hours (and generally sooner, within 6-10 hours). This shows how fast the brain can repair damage. Similarly, the fact that such tiny lesions have temporary effects so much more dramatic than the more lasting effects of larger lesions, is also a tribute to the plasticity of the brain.

The findings are consistent with findings of a preferential degeneration of CA1 neurons in the early stages of Alzheimer's disease, and suggest a target for treatment.

Working memory capacity and level of math anxiety were assessed in 73 undergraduate students, and their level of salivary cortisol was measured both before and after they took a stressful math test.

For those students with low working memory capacity, neither cortisol levels nor math anxiety made much difference to their performance on the test. However, for those with higher WMC, the interaction of cortisol level and math anxiety was critical. For those unafraid of math, the more their cortisol increased during the test, the better they performed; but for those anxious about math, rising cortisol meant poorer performance.

It’s assumed that low-WMC individuals were less affected because their performance is lower to start with (this shouldn’t be taken as an inevitability! Low-WMC students are disadvantaged in a domain like math, but they can learn strategies that compensate for that problem). But the effect on high-WMC students demonstrates how our attitude and beliefs interact with the effects of stress. We may all have the same physiological responses, but we interpret them in different ways, and this interpretation is crucial when it comes to ‘higher-order’ cognitive functions.

Another study investigated two theories as why people choke under pressure: (a) they’re distracted by worries about the situation, which clog up their working memory; (b) the stress makes them pay too much attention to their performance and become self-conscious. Both theories have research backing from different domains — clearly the former theory applies more to the academic testing environment, and the latter to situations involving procedural skill, where explicit attention to the process can disrupt motor sequences that are largely automatic.

But it’s not as simple as one effect applying to the cognitive domain, and one to the domain of motor skills, and it’s a little mysterious why pressure could have too such opposite effects (drawing attention away, or toward). This new study carried out four experiments in order to define more precisely the characteristics of the environment that lead to these different effects, and suggest solutions to the problem.

In the first experiment, participants were given a category learning task, in which some categories had only one relevant dimension and could be distinguished according to one easily articulated rule, and others involved three relevant dimensions and one irrelevant one. Categorization in this case was based on a complex rule that would be difficult to verbalize, and so participants were expected to integrate the information unconsciously.

Rule-based category learning was significantly worse when participants were also engaged in a secondary task requiring them to monitor briefly appearing letters. However it was not affected when their secondary task involved them explicitly monitoring the categorization task and making a confidence judgment. On the other hand, the implicit category learning task was not disrupted by the letter-monitoring task, but was impaired by the confidence-judgment task. Further analysis revealed that participants who had to do the confidence-judgment task were less likely to use the best strategy, but instead persisted in trying to verbalize a one- or two-dimension rule.

In the second experiment, the same tasks were learned in a low-pressure baseline condition followed by either a low-pressure control condition or one of two high-pressure conditions. One of these revolved around outcome — participants would receive money for achieving a certain level of improvement in their performance. The other put pressure on the participants through monitoring — they were watched and videotaped, and told their performance would be viewed by other students and researchers.

Rule-based category learning was slower when the pressure came from outcomes, but not when the pressure came from monitoring. Implicit category learning was unaffected by outcome pressure, but worsened by monitoring pressure.

Both high-pressure groups reported the same levels of pressure.

Experiment 3 focused on the detrimental combinations — rule-based learning under outcome pressure; implicit learning under monitoring pressure — and added the secondary tasks from the first experiment.

As predicted, rule-based categories were learned more slowly during conditions of both outcome pressure and the distracting letter-monitoring task, but when the secondary task was confidence-judgment, the negative effect of outcome pressure was counteracted and no impairment occurred. Similarly, implicit category learning was slowed when both monitoring pressure and the confidence-judgment distraction were applied, but was unaffected when monitoring pressure was counterbalanced by the letter task.

The final experiment extended the finding of the second experiment to another domain — procedural learning. As expected, the motor task was significantly affected by monitoring pressure, but not by outcome pressure.

These findings suggest two different strategies for dealing with choking, depending on the situation and the task. In the case of test-taking, good test preparation and a writing exercise can boost performance by reducing anxiety and freeing up working memory. If you're worried about doing well in a game or giving a memorized speech in front of others, you instead want to distract yourself so you don't become focused on the details of what you're doing.

In a two-part experiment, Black and White students studied the definitions of 24 obscure English words, and were later tested, in threatening or non-threatening environments. In the threatening study environment, students were told that the task would assess their "learning abilities and limitations" and "how well people from different backgrounds learn”. In the non-threatening environment, students were told that the study focused on identifying "different learning styles". When tested one to two weeks later, students were first given a low-stress warm-up exercise with half of the word definitions. Then, in order to evoke concerns about stereotypes, a test was given which was described as evaluating "your ability to learn verbal information and your performance on problems requiring verbal reasoning ability".

The effect of these different environments on the Black students was dramatic. On the non-threatening warm-up test, Black students who had studied in the threatening learning environment performed about 50% worse than Black students who had studied in the non-threatening environment. But on the ‘real’ test, for which stereotypes had been evoked, all the Blacks — including those who had done fine on the warm-up — did poorly.

In the second experiment, only Black students were involved, and they all studied in the threatening environment. This time, however, half of the students were asked to begin with a "value affirmation" exercise, during which they chose values that mattered most to them and explained why. The other students were asked to write about a value that mattered little to them. A week later, students did the warm-up and the test. Black students who had written about a meaningful value scored nearly 70% better on the warm-up than black students who had written about other values.

[2348] Taylor VJ, Walton GM. Stereotype Threat Undermines Academic Learning. Personality and Social Psychology Bulletin [Internet]. 2011 ;37(8):1055 - 1067. Available from: http://psp.sagepub.com/content/37/8/1055.abstract

The brain tends to shrink with age, with different regions being more affected than others. Atrophy of the hippocampus, so vital for memory and learning, is associated with increased risk of developing Alzheimer’s, and has also been linked to depression.

In a study involving 268 older adults (58+), the hippocampus of those reporting a life-changing religious experience was found to be shrinking significantly more compared to those not reporting such an experience. Significantly greater hippocampal atrophy was also found among born-again Protestants, Catholics, and those with no religious affiliation, compared with Protestants not identifying as born-again.

The participants are not a general sample — they were originally recruited for the NeuroCognitive Outcomes of Depression in the Elderly. However, some of the participants were from the control group, who had no history of depression. Brain scans were taken at the beginning of the study, and then every two years. The length of time between the baseline scan and the final scan ranged from 2 to 8 years (average was 4).

Questions about religious experiences were asked in an annual survey, so could change over time. Two-thirds of the group was female, and 87% were white. The average age was 68. At baseline, 42% of the group was non-born-again Protestant, 36% born-again Protestant; 8% Catholic; 6% other religion. Only 7% reported themselves as having no religion. By the end of the study, 44% (119 participants) reported themselves born-again, and 13% (36) reported having had life-changing religious experiences.

These associations persisted after depression status, acute stress, and social support were taken into account. Nor did other religious factors (such as prayer, meditation, or Bible study) account for the changes.

It is still possible that long-term stress might play a part in this association — the study measured acute rather than cumulative stress. The researchers suggest that life-changing religious experiences can be stressful, if they don’t fit in with your existing beliefs or those of your family and friends, or if they lead to new social systems that add to your stress.

Of course, the present results can be interpreted in several ways — is it the life-changing religious experience itself that is the crucial factor? Or the factors leading up to that experience? Or the consequences of that experience? Still, it’s certainly an intriguing finding, and it will be interesting to see more research expanding and confirming (or not!) this result.

More generally, the findings may help clarify the conflicting research about the effects of religion on well-being, by pointing to the fact that religion can’t be considered a single factor, but one subject to different variables, some of which may be positive and others not.

A recent study of cancer survivors has found that many survivors still suffer moderate to severe problems with pain, fatigue, sleep, memory and concentration three to five years after treatment has ended.

The study included 248 survivors of breast, colorectal, lung and prostate cancer. The survivors were primarily female and white, and most were more than five years post-diagnosis. Cognitive difficulties were reported by 13%. The other most common symptoms were fatigue (16%), disturbed sleep (15%), and pain (13%). Two assessments were made, one month apart. The similar results indicate these symptoms tend to be chronic.

The researchers pointed to the need for education programs to help survivors transition from treatment to life as a cancer survivor, and the need for clinicians and researchers to develop better ways to address sleep problems, fatigue and lasting difficulties with memory and concentration.

One activity that could be part of a post-treatment program is t'ai chi.  A recent pilot study involving 23 women with a history of chemotherapy has found better cognitive and physical functioning after 10 weeks participating in a 60-minute t’ai chi class twice a week. Before and after the intervention, participants completed tests of memory, executive functioning, language, and attention, as well as tests of balance and self-report questionnaires of neuropsychological complaints, stress and mood, and fatigue.

However, though I’m a big fan of t’ai chi, I do have to note that without a control group, allowing the passing of time and the effects of any sort of group activity to be taken into account, it’s hard to draw any real conclusions from this.

Still, some support for this finding can be found in a recent meta-analysis of research investigating the benefits of t'ai chi for any improvement of medical conditions or clinical symptoms. This review found that the only clear evidence is in relation to fall prevention and improving psychological health. So, only middling support for t'ai chi, but the affirmation of its benefit for psychological health does support the potential value of this meditational practice for cancer survivors.

The findings of the first study were presented June 4 at the 2011 American Society of Clinical Oncology Annual Meeting in Chicago.

[2320] Reid-Arndt SA, Matsuda S, Cox CR. Tai Chi effects on neuropsychological, emotional, and physical functioning following cancer treatment: A pilot study. Complementary Therapies in Clinical Practice [Internet]. Submitted ;In Press, Corrected Proof. Available from: http://www.sciencedirect.com/science/article/pii/S1744388111000259

[2319] Lee MS, Ernst E. Systematic reviews of t'ai chi: an overview. British Journal of Sports Medicine [Internet]. 2011 . Available from: http://bjsm.bmj.com/content/early/2011/05/02/bjsm.2010.080622.abstract

As I’ve discussed on many occasions, a critical part of attention (and working memory capacity) is being able to ignore distraction. There has been growing evidence that mindfulness meditation training helps develop attentional control. Now a new study helps fill out the picture of why it might do so.

The alpha rhythm is particularly active in neurons that process sensory information. When you expect a touch, sight or sound, the focusing of attention toward the expected stimulus induces a lower alpha wave height in neurons that would handle the expected sensation, making them more receptive to that information. At the same time the height of the alpha wave in neurons that would handle irrelevant or distracting information increases, making those cells less receptive to that information. In other words, alpha rhythm helps screen out distractions.

In this study, six participants who completed an eight-week mindfulness meditation program (MBSR) were found to generate larger alpha waves, and generate them faster, than the six in the control group. Alpha wave activity in the somatosensory cortex was measured while participants directed their attention to either their left hand or foot. This was done on three occasions: before training, at three weeks of the program, and after the program.

The MBSR program involves an initial two-and-a-half-hour training session, followed by daily 45-minute meditation sessions guided by a CD recording. The program is focused on training participants first to pay close attention to body sensations, then to focus on body sensations in a specific area, then being able to disengage and shifting the focus to another body area.

Apart from helping us understand why mindfulness meditation training seems to improve attention, the findings may also explain why this meditation can help sufferers of chronic pain.

A study involving 200 older adults (70+) experiencing a stay in hospital has found that at discharge nearly a third (31.5%) had previously unrecognized low cognitive function (scoring below 25 on the MMSE if high-school-educated, or below 18 if not). This impairment had disappeared a month later for more than half (58%).The findings are consistent with previous research showing a lack of comprehension of discharge instructions, often resulting in rehospitalization.

The findings demonstrate the effects of hospitalization on seniors, and point to the need for healthcare professionals and family to offer additional support. It’s suggested that patient self-management may be better taught as an outpatient following discharge rather than at the time of hospital discharge.

Sleep disruption and stress are presumed to be significant factors in why this occurs.

What makes one person so much better than another in picking up a new motor skill, like playing the piano or driving or typing? Brain imaging research has now revealed that one of the reasons appears to lie in the production of a brain chemical called GABA, which inhibits neurons from responding.

The responsiveness of some brains to a procedure that decreases GABA levels (tDCS) correlated both with greater brain activity in the motor cortex and with faster learning of a sequence of finger movements. Additionally, those with higher GABA concentrations at the beginning tended to have slower reaction times and less brain activation during learning.

It’s simplistic to say that low GABA is good, however! GABA is a vital chemical. Interestingly, though, low GABA has been associated with stress — and of course, stress is associated with faster reaction times and relaxation with slower ones. The point is, we need it in just the right levels, and what’s ‘right’ depends on context. Which brings us back to ‘responsiveness’ — more important than actual level, is the ability of your brain to alter how much GABA it produces, in particular places, at particular times.

However, baseline levels are important, especially where something has gone wrong. GABA levels can change after brain injury, and also may decline with age. The findings support the idea that treatments designed to influence GABA levels might improve learning. Indeed, tDCS is already in use as a tool for motor rehabilitation in stroke patients — now we have an idea why it works.

Following previous research suggesting that the volume of the hippocampus was reduced in some people with chronic PTSD, a twin study indicated that this may not be simply a sign that stress has shrunk the hippocampus, but that those with a smaller hippocampus are at greater risk of PTSD. Now a new study has found that Gulf War veterans who recovered from PTSD had, on average, larger hippocampi than veterans who still suffer from PTSD. Those who recovered had hippocampi of similar size to control subjects who had never had PTSD.

The study involved 244 Gulf War veterans, of whom 82 had lifetime PTSD, 44 had current PTSD, and 38 had current depression.

Because we don’t know hippocampal size prior to trauma, the findings don’t help us decide whether hippocampal size is a cause or an effect (or perhaps it would be truer to say, don’t help us decide the relative importance of these factors, because it seems most plausible that both are significant).

The really important question, of course, is whether an effective approach to PTSD treatment would be to work on increasing hippocampal volume. Exercise and mental stimulation, for example, are known to increase the creation of new brain cells in the hippocampus. In this case, the main mediator is probably the negative effects of stress (which reduces neurogenesis). There is some evidence that antidepressant treatment might increase hippocampal volume in people with PTSD.

The other conclusion we can derive from these findings is that perhaps we should not simply think of building hippocampal volume / creating new brain cells as a means of building cognitive reserve, thus protecting us from cognitive decline and dementia. We should also think of it as a means of improving our emotional resilience and protecting us from the negative effects of stress and trauma.

A study involving 38 people suffering from mild traumatic brain injury (TBI) has found that those receiving acupressure treatments from trained experts (eight treatments over 4 weeks) scored significantly better on tests of working memory compared to those who received treatments from the same experts on places on the body that are not considered to be acupressure points.

Acupressure involves the practitioner using his fingertips to stimulate particular points on a person's body. The acupressure treatment type used in the study was Jin Shin. This treatment can be taught to family and friends of those with TBI and can even be used as a self-treatment, making it a good candidate for an adjunct treatment for TBI.

Brain images of 16 participants in an 8-week mindfulness meditation program, taken two weeks before and after the program, have found measurable changes in brain regions associated with memory, sense of self, empathy and stress. Specifically, they showed increased grey-matter density in the left hippocampus, posterior cingulate cortex, temporo-parietal junction, and cerebellum, as well as decreased grey-matter density in the amygdala. Similar brain scans of a control group of non-meditators (those on a waiting list for the program) showed no such changes over time.

Although a number of studies have found differences in the brains of experienced meditators and those who don’t practice meditation, this is the first to demonstrate that those differences are actually produced by meditation.

The Mindfulness-Based Stress Reduction program involved weekly meetings that included practice of mindfulness meditation and audio recordings for guided meditation practice. Participants reported spending an average of 27 minutes each day practicing mindfulness exercises.

Given all the research showing the importance of sleep for consolidating memories, it should come as no great surprise that the reverse is also true: depriving yourself of sleep could help you forget experiences you would prefer not to remember.

In the study, 28 student volunteers were shown 14 short video clips, half of which showed safe driving down a city street, and half showed the car being involved in a nasty crash. Half of the volunteers were then deprived of sleep while the other half received a normal night's sleep. The next day, they were shown pictures and asked to indicate whether they had appeared in the clips they had seen. They were also asked to rate the fear evoked by the image, and their physiological responses measured. They were tested again 3 and 10 days later.

While there was no difference between the two groups in picture recognition, the control group rated the images from the crash videos as fearful, and these responses generalized over time to the other images. However, those who were sleep deprived showed such reactions only on the first day.

The finding suggests a possible therapy for PTSD or other anxiety disorders.

A mouse study has revealed the brain becomes overly stimulated after a traumatic event causes an ongoing, frenzied interaction between two brain proteins long after they should have disengaged. However, the injection of newly developed drugs into the hippocampus within a five hour window calmed this process, and prevented the development of a post-traumatic fear response.

The new research shows the potential for PTSD occurs when a stressful event causes a flood of glutamate, which then interacts with a second protein (Homer1a). This protein continues to stimulate metabotropic glutamate receptor 5 [mGluR5] after the glutamate has dissipated. The new drugs bind mGluR5 and reverse its activity.

An Australian study of 3796 14-year-olds has found that those who had been reported as having suffered abuse or neglect (7.9%) scored the equivalent of some three IQ points lower than those who had not been maltreated, after accounting for a large range of socioeconomic and other factors. Abuse and neglect were independent factors: those who suffered both (and 74% of those who suffered neglect also suffered abuse) were doubly affected.

Data from a 35-year study of women from Gothenburg in Sweden has revealed that the risk of dementia was about 65% higher in women who reported repeated periods of stress in middle age than in those who did not. The risk increased with number of periods of stress, with women who reported stress on all three occasions they were asked (1968, 1974 and 1980) having more than double the risk of dementia. Stress was defined as a sense of irritation, tension, nervousness, anxiety, fear or sleeping problems lasting a month or more due to work, health, family or other problems. Of the 1462 women in the sample used, 11% developed dementia, 65% of which was Alzheimer’s and 25% vascular dementia.

A study involving over 180,000 older veterans (average age 68.8 at study start), of whom 29% had PTSD, has revealed that those with PTSD had a significantly greater risk of developing dementia. Over the seven years of the study, 10.6% of the veterans with PTSD developed dementia compared to 6.6% of those without PTSD. When age was used as the time scale, the risk for those with PTSD was more than double. Results were similar when those with a history of head injury, substance abuse, or clinical depression, were excluded.

One possibility for the link is that the stress induced by PTSD contributes to the development of dementia.

Findings that children are less likely than adults to distort memories when negative emotions are evoked has significant implications for the criminal justice system. Experiments involving children aged seven and 11, and young adults (18-23) found that when they were shown lists of closely related emotional words (e.g. pain, cut, ouch, cry, injury), they would tend to mistakenly remember a related word (e.g. hurt) although it had not been present. Despite the prevailing theory that being involved in a very negative experience focuses your mind and helps you notice and remember details, words that had negative emotional content produced the highest levels of false memory. With arousal (such as would be evoked in a traumatic experience), memory was distorted more. These tendencies increased with age.

A study involving 125 women has found the first, direct human evidence that fetuses exposed to elevated levels of the stress hormone cortisol may have trouble paying attention or solving problems at 17 months. But more hopefully, the association only occurred among children showing insecure attachment to their mothers, independent of socioeconomic factors. The findings suggest that a stressful prenatal environment may be effectively counteracted by good parental care. The children will be followed up when they turn 6.

A study involving over 1000 older men and women (60-75) with type-2 diabetes has found that those with higher levels of the stress hormone cortisol in their blood are more likely to have experienced cognitive decline. Higher fasting cortisol levels were associated with greater estimated cognitive decline in general intelligence, working memory and processing speed. This was independent of mood, education, metabolic variables and cardiovascular disease. Strategies aimed at lowering stress levels may be helpful for older diabetics.

Mindfulness Training had a positive effect on both working memory capacity and mood in a group of Marine reservists during the high-stress pre-deployment interval. While those who weren’t given the 8-week MT program, as well as those who spent little time engaging in mindfulness exercises, showed greater negative mood and decreased working memory capacity over the eight weeks, those who recorded high practice time showed increased capacity and decreased negative mood. A civilian control group showed no change in working memory capacity over the period. The program, called Mindfulness-based Mind Fitness Training (MMFT™), blended mindfulness skills training with concrete applications for the operational environment and information and skills about stress, trauma and resilience in the body. The researchers suggest that mindfulness training may help anyone who must maintain peak performance in the face of extremely stressful circumstances.

A study using data on reported homicides in Chicago 1994-2002 and two independent surveys of children and families in Chicago, has revealed that African-American children who were assessed directly after a local homicide occurred scored substantially lower on vocabulary and reading assessments than their peers from the same neighborhood who were assessed at different times. The impact of the homicide faded both with time and distance from the child's home. However, in both datasets, while the results were extremely strong for African Americans, there was no effect of local homicides for Hispanics. Because of the prevalence of homicide in the most violent neighborhoods in cities like Chicago, these results mean that some children spend about one week out of every month functioning at a low level. Whites and other ethnic groups were excluded from the study because they were almost never exposed to local homicides in the samples used.

[1631] Sharkey P. The acute effect of local homicides on children's cognitive performance. Proceedings of the National Academy of Sciences [Internet]. 2010 ;107(26):11733 - 11738. Available from: http://www.pnas.org/content/107/26/11733.abstract

Older news items (pre-2010) brought over from the old website

Short stressful events may improve working memory

We know that chronic stress has a detrimental effect on learning and memory, but a new rat study shows how acute stress (a short, sharp event) can produce a beneficial effect. The rats, trained to a level of 60-70% accuracy on a maze, were put through a 20-minute forced swim before being run through the maze again. Those who experienced this stressful event were better at running the maze 4 hours later, and a day later, than those not forced through the stressful event. It appears that the stress hormone corticosterone (cortisol in humans) increases transmission of the neurotransmitter glutamate in the prefrontal cortex and improves working memory. It also appears that chronic stress suppresses the transmission of glutamate in the prefrontal cortex of male rodents, while estrogen receptors in female rodents make them more resilient to chronic stress than male rats.

[1157] Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2009 ;106(33):14075 - 14079. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19666502

http://www.eurekalert.org/pub_releases/2009-07/uab-sse072309.php

Stressed brains rely on habit

And another rat study has found that rats stressed repeatedly and unpredictably for three weeks were more likely than unstressed animals to continue performing habitual behaviors, even when it no longer made sense to do so. This behavior was correlated with reductions in the prelimbic cortex of the medial prefrontal cortex and the dorsomedial striatum (both implicated in goal-directed actions), and increases in the size of the dorsolateral striatum (necessary for habit). The finding follows on from previous research showing that habit formation involves a switch between neural circuits associated with goal-directed behavior and those controlling habitual behavior. The findings have implications for therapies for stress-related disorders and addictive behavior.

[517] Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, Costa RM, Sousa N. Chronic Stress Causes Frontostriatal Reorganization and Affects Decision-Making. Science [Internet]. 2009 ;325(5940):621 - 625. Available from: http://www.sciencemag.org/cgi/content/abstract/325/5940/621

http://www.the-scientist.com/blog/display/55873/

Stress disrupts task-switching, but the brain can bounce back

A new neuroimaging study involving 20 male M.D. candidates in the middle of preparing for their board exams has found that they had a harder time shifting their attention from one task to another after a month of stress than other healthy young men who were not under stress. The finding replicates what has been found in rat studies, and similarly correlates with impaired function in an area of the prefrontal cortex that is involved in attention. However, the brains recovered their function within a month of the end of the stressful period.

[829] Liston C, McEwen BS, Casey BJ. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences [Internet]. 2009 ;106(3):912 - 917. Available from: http://www.pnas.org/content/106/3/912.abstract

Full text available at http://www.pnas.org/content/106/3/912.abstract
http://www.eurekalert.org/pub_releases/2009-01/ru-sdh012709.php

Psychological distress, not depression, linked to increased risk of stroke

A study following 20,627 people for an average of 8.5 years has found that psychological distress was associated with an increased risk of stroke and that the risk of stroke increased the more distress the participants reported. This association remained the same regardless of cigarette smoking, systolic blood pressure, overall blood cholesterol, obesity, previous heart attack, diabetes, social class, education, high blood pressure treatment, family history of stroke and recent antidepressant medication use. However, there was no increased risk for people who had experienced an episode of major depression in the past year or at any point in their lifetime.

[1298] Surtees PG, Wainwright NWJ, Luben RN, Wareham NJ, Bingham SA, Khaw K-T. Psychological distress, major depressive disorder, and risk of stroke. Neurology [Internet]. 2008 ;70(10):788 - 794. Available from: http://www.neurology.org/cgi/content/abstract/70/10/788

http://www.eurekalert.org/pub_releases/2008-03/aaon-pdn022608.php

Short-term stress can affect learning and memory

We know that long-lasting, severe stress can impair cell communication in the hippocampus. Now rodent studies have demonstrated that the same outcome can happen with short-term stress. But rather than involving the familiar stress hormone cortisol, acute stress activated corticotropin releasing hormones, which led to the rapid disintegration of dendritic spines in the hippocampus, thus limiting the ability of synapses to collect and store memories.

[981] Chen Y, Dube CM, Rice CJ, Baram TZ. Rapid Loss of Dendritic Spines after Stress Involves Derangement of Spine Dynamics by Corticotropin-Releasing Hormone. J. Neurosci. [Internet]. 2008 ;28(11):2903 - 2911. Available from: http://www.jneurosci.org/cgi/content/abstract/28/11/2903

http://www.eurekalert.org/pub_releases/2008-03/uoc--ssc031008.php

Correct levels of stress hormones boost learning

Although it’s known that cortisol production is related to stress and has an impact on learning in humans, that impact is not well understood, because of the difficulties of controlling cortisol levels in humans. A study using ground squirrels has now found that they learn more quickly if they have a modest amount of cortisol, rather than either high or low levels of cortisol.

[252] Mateo JM. Inverted-U shape relationship between cortisol and learning in ground squirrels. Neurobiology of Learning and Memory [Internet]. 2008 ;89(4):582 - 590. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18164635

http://www.eurekalert.org/pub_releases/2008-03/uoc-rws031208.php

Stress hormone impacts memory, learning in diabetic rodents

A rodent study sheds light on why diabetes can impair cognitive function. The study found that increased levels of a stress hormone (called cortisol in humans) in diabetic rats impaired synaptic plasticity and reduced neurogenesis in the hippocampus. When levels returned to normal, the hippocampus recovered. Cortisol production is controlled by the hypothalamic-pituitary axis (HPA). People with poorly controlled diabetes often have an overactive HPA axis and excessive cortisol.

[1050] Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience [Internet]. 2008 ;11(3):309 - 317. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18278039

http://www.eurekalert.org/pub_releases/2008-02/nioa-shi021508.php

How stress affects memory

We know stress affects memory. Now a rat study tells us one of the ways it does that. Cell recordings in the hippocampus revealed that, when a mouse moves from one location to another, particular cells fired at each location. When the mouse returned to an earlier location, the same cells fire. However, following stress, the cells that fired in a particular location still fired at the same location, but tended to fire at a different frequency. Stress also reduce the level of LTP at the synapses.

[1295] Kim JJ, Lee HJ, Welday AC, Song EY, Cho J, Sharp PE, Jung MW, Blair HT. Stress-induced alterations in hippocampal plasticity, place cells, and spatial memory. Proceedings of the National Academy of Sciences [Internet]. 2007 ;104(46):18297 - 18302. Available from: http://www.pnas.org/content/104/46/18297.abstract

http://www.sciencentral.com/articles/view.php3?article_id=218393035

Highly accomplished people more prone to failure than others when under stress

One important difference between those who do well academically and those who don’t is often working memory capacity. Those with a high working memory capacity find it easier to read and understand and reason, than those with a smaller capacity. However, a new study suggests there is a downside. Such people tend to heavily rely on their abundant supply of working memory and are therefore disadvantaged when challenged to solve difficult problems, such as mathematical ones, under pressure — because the distraction caused by stress consumes their working memory. They then fall back on the less accurate short-cuts that people with less adequate supplies of working memory tend to use, such as guessing and estimation. Such methods are not made any worse by working under pressure. In the study involving 100 undergraduates, performance of students with strong working memory declined to the same level as those with more limited working memory, when the students were put under pressure. Those with more limited working memory performed as well under added pressure as they did without the stress.

The findings were presented February 17 at the annual meeting of the American Association for the Advancement of Science.

http://www.eurekalert.org/pub_releases/2007-02/uoc-hap021607.php

Lifestyle changes improve seniors’ memory surprisingly quickly

A small 14-day study found that those following a memory improvement plan that included memory training, a healthy diet, physical exercise, and stress reduction, showed a 5% decrease in brain metabolism in the dorsal lateral prefrontal region of the brain (involved in working memory) suggesting they were using their brain more efficiently. This change in activity was reflected in better performance on a cognitive measure controlled by this brain region, and participants reported that they felt their memory had improved. The memory training involved doing brainteasers, crossword puzzles and memory exercises. Diet involved eating 5 small meals daily (to prevent fluctuations in blood glucose levels) that were rich in omega-3 fats, low-glycemic index carbohydrates (e.g., whole grains) and antioxidants. Physical exercise involved brisk walking and stretching, and stress reduction involved stretching and relaxation exercises.

The study was presented at the American College of Neuropsychopharmacology's Annual Meeting on December 11-15, in Hawaii.

http://www.eurekalert.org/pub_releases/2005-12/g-nsf121205.php

Stress interferes with problem-solving; Beta-blocker may help

New research suggests that an experience as simple as watching graphically violent or emotional scenes in a movie can induce enough stress to interfere with problem-solving abilities, and that a beta-blocker medication could promote the ability to think flexibly under stressful conditions. Neither the stress nor the beta-blocker affected memory. The research not only has implications for understanding the range of effects of stress on thinking, but could also have broader clinical implications for patients with anxiety disorders or substance abuse problems.

Renner, K., Alexander, J., Hillier, A., Smith, R. & Tivarus, M. 2005. Presented at the annual Society for Neuroscience meeting in Washington, D.C.

http://www.eurekalert.org/pub_releases/2005-11/osu-siw110905.php

Early life stress can lead to memory loss and cognitive decline in middle age

Age-related cognitive decline is probably a result of both genetic and environmental factors. A rat study has demonstrated that some of these environmental factors may occur in early life. Among the rats, emotional stress in infancy showed no ill effects by the time the rats reached adulthood, but as the rats reached middle age, cognitive deficits started to appear in those rats who had had stressful infancies, and progressed much more rapidly with age than among those who had had nurturing infancies. Middle-aged rats who had been exposed to early life emotional stress showed deterioration in brain-cell communication in the hippocampus.

[1274] Brunson KL, Kramar E, Lin B, Chen Y, Colgin LL, Yanagihara TK, Lynch G, Baram TZ. Mechanisms of Late-Onset Cognitive Decline after Early-Life Stress. J. Neurosci. [Internet]. 2005 ;25(41):9328 - 9338. Available from: http://www.jneurosci.org/cgi/content/abstract/25/41/9328

http://www.eurekalert.org/pub_releases/2005-10/uoc--els100605.php

Stress bad for the brain

A study of older adults for three to six years has found that those with continuous high levels of the stress hormone cortisol performed poorly on memory tests and had a 14% smaller hippocampus. A further study involving young adults and children between the ages of six and fourteen found that even an acute increase in cortisol can lead to reversible memory impairments in young adults, and that children from low socio-economic status environments had higher cortisol levels than those from high SES homes. Children from low SES homes tended to process positive and negative attributes more negatively than children from high SES homes, and this type of processing was significantly related to basal cortisol levels at ages 10, 12 and 14.

[1415] Lupien SJ, Fiocco AJ, Wan N, Maheu F, Lord C, Schramek T, Tu MT. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology [Internet]. 2005 ;30(3):225 - 242. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15511597

http://www.eurekalert.org/pub_releases/2005-05/mu-tst051705.php

Anxiety adversely affects those who are most likely to succeed at exams

It has been thought that pressure harms performance on cognitive skills such as mathematical problem-solving by reducing the working memory capacity available for skill execution. However, a new study of 93 students has found that this applies only to those high in working memory. It appears that the advantage of a high working memory capacity disappears when that attention capacity is compromised by anxiety.

[355] Beilock SL, Carr TH. When high-powered people fail: working memory and "choking under pressure" in math. Psychological Science: A Journal of the American Psychological Society / APS [Internet]. 2005 ;16(2):101 - 105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15686575

http://www.eurekalert.org/pub_releases/2005-02/bpl-wup020705.php

Anxiety good for memory recall, bad for solving complex problems

Cognitive tests given to 19 first-year medical students one to two days before a regular classroom exam, and then a week after the exam, found that, before the exam, students were better able to accurately recall a list of memorized numbers, but did less well on tests that required them to consider many possibilities in order to come up with a reasonable answer. A week after the exam, the opposite was true. It is assumed that the difference in results reflects the effects of stress.

Jessa Alexander & David Beversdorf presented their findings on October 25 in San Diego at the annual Society for Neuroscience conference.

http://www.eurekalert.org/pub_releases/2004-10/osu-agf101904.php

Estrogen effect on memory influenced by stress

The question of whether estrogen helps memory and cognition in women has proven surprisingly difficult to answer, with studies giving conflicting results. Now it seems the answer to that confusion is: it depends. And one of the things it depends on may be the level of stress the woman is experiencing. A rat study has found that the performance of female rats in a water maze was affected by the interaction of hormone level (whether the rat was estrous or proestrous) with water temperature (a source of physical stress). Those rats with high hormone levels did better when the water was warm, while those with low hormone levels did better when the water was cold. The researchers suggest both timing and duration of stress might be factors in determining the effect of hormones on cognition.

[384] Rubinow MJ, Arseneau LM, Beverly LJ, Juraska JM. Effect of the Estrous Cycle on Water Maze Acquisition Depends on the Temperature of the Water. Behavioral Neuroscience [Internet]. 2004 ;118(4):863 - 868. Available from: http://psycnet.apa.org/journals/bne/118/4/863/

http://www.eurekalert.org/pub_releases/2004-08/uoia-sss082704.php

Stress reactions no guarantee of authenticity

Physical stress reactions have often been taken as evidence for the authenticity of a memory. A recent study investigated people with “memories” of alien abductions (on the grounds that these are the memories least likely to be true) and found that those who believed they had been abducted by aliens responded physically to recall of that memory in the same way as to recall of other, true, stressful events. The finding suggests that a person’s reaction to a memory is no evidence for whether or not it truly happened.

[1161] McNally RJ, Lasko NB, Clancy SA, Macklin ML, Pitman RK, Orr SP. Psychophysiological responding during script-driven imagery in people reporting abduction by space aliens. Psychological Science: A Journal of the American Psychological Society / APS [Internet]. 2004 ;15(7):493 - 497. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15200635

http://www.eurekalert.org/pub_releases/2004-06/aps-ptw062104.php

Stress no aid to memory

Numerous studies have questioned the accuracy of recall of traumatic events, but the research is often dismissed as artificial and not intense enough to simulate real-life trauma. A new study has used real stress: 509 active duty military personnel enrolled in survival school training were deprived of food and sleep 48 hours and then interrogated. A day later, only 30% of those presented with a line-up could identify the right person, only 34% identified their interrogator from a photo-spread and 49% from single photos shown sequentially (putting the interrogator in the same clothing boosted correct identification to 66%). Thirty people even got the gender wrong. Those subjected to physical threats (half the participants) performed worse.

[269] Morgan CA, Hazlett G, Doran A, Garrett S, Hoyt G, Thomas P, Baranoski M, Southwick SM. Accuracy of eyewitness memory for persons encountered during exposure to highly intense stress. International Journal of Law and Psychiatry [Internet]. Submitted ;27(3):265 - 279. Available from: http://www.sciencedirect.com/science/article/B6V7W-4CBDBF9-1/2/91d02e51672db7b67521d32450f7b006

http://www.newscientist.com/news/news.jsp?id=ns99995089
http://www.eurekalert.org/pub_releases/2004-06/yu-emp060304.php
http://www.eurekalert.org/pub_releases/2004-06/ns-mfy060904.php

Anxiety over math blocks learning

The so-called "math block" is notorious - why do we have such a term? Do we talk about a "geography block", or a "physics block"? But we do talk of a reading block. Perhaps the reason for both is the same.
The amount of information you can work with at one time has clear limits, defined by your working memory capacity. When we are anxious, part of our working memory is taken up with our awareness of these fears and worries, leaving less capacity available for processing (which is why students who are very anxious during exams usually perform well below their capabilities). Processes such as reading and working with numbers are very sensitive to working memory capacity because they place such demands on it.
A recently reported study by Mark H. Ashcraft and Elizabeth P. Kirk, both psychologists at Cleveland (Ohio) State University, provides the first solid evidence that, indeed, math-anxious people have working memory problems as they do math.

[2549] Ashcraft MH, Kirk EP. The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General. 2001 ;130(2):224 - 237.

http://www.sciencenews.org/20010630/fob4.asp