Stereotype threat

In the study, 64 older adults (60-74; average 70) and 64 college students were compared on a word recognition task. Both groups first took a vocabulary test, on which they performed similarly. They were then presented with 12 lists of 15 semantically related words. For example, one list could have words associated with "sleep," such as "bed," "rest," "awake," "tired" and "night" — but not the word “sleep”. They were not told they would be tested on their memory of these, rather they were asked to rate each word for pleasantness.

They then engaged in a five-minute filler task (a Sudoku) before a short text was read to them. For some, the text had to do with age-related declines in memory. These participants were told the experiment had to do with memory. For others, the text concerned language-processing research. These were told the experiment had to do with language processing and verbal ability.

They were then given a recognition test containing 36 of the studied words, 48 words unrelated to the studied words, and 12 words related to the studied words (e.g. “sleep”). After recording whether or not they had seen each word before, they also rated their confidence in that answer on an 8-point scale. Finally, they were given a lexical decision task to independently assess stereotype activation.

While young adults showed no effects from the stereotype manipulation, older adults were much more likely to falsely recognize related words that had not been studied if they had heard the text on memory. Those who heard the text on language were no more likely than the young adults to falsely recognize related words.

Note that there is always quite a high level of false recognition of such items: young adults, and older adults in the low-threat condition falsely recognized around half of the related lures, compared to around 10% of unrelated words. But in the high-threat condition, older adults falsely recognized 71% of the related words.

Moreover, older adults’ confidence was also affected. While young adults’ confidence in their false memories was unaffected by threat condition, older adults in the high-threat condition were more confident of their false memories than older adults in the low-threat condition.

The idea that older adults were affected by negative stereotypes about aging was supported by the results of the lexical decision task, which found that, in the high-threat condition, older adults responded more quickly to words associated with negative stereotypes than to neutral words (indicating that they were more accessible). Young adults did not show this difference.

Thomas, A. K., & Dubois, S. J. (2011). Reducing the burden of stereotype threat eliminates age differences in memory distortion. Psychological science, 22(12), 1515-7. doi:10.1177/0956797611425932

In a two-part experiment, Black and White students studied the definitions of 24 obscure English words, and were later tested, in threatening or non-threatening environments. In the threatening study environment, students were told that the task would assess their "learning abilities and limitations" and "how well people from different backgrounds learn”. In the non-threatening environment, students were told that the study focused on identifying "different learning styles". When tested one to two weeks later, students were first given a low-stress warm-up exercise with half of the word definitions. Then, in order to evoke concerns about stereotypes, a test was given which was described as evaluating "your ability to learn verbal information and your performance on problems requiring verbal reasoning ability".

The effect of these different environments on the Black students was dramatic. On the non-threatening warm-up test, Black students who had studied in the threatening learning environment performed about 50% worse than Black students who had studied in the non-threatening environment. But on the ‘real’ test, for which stereotypes had been evoked, all the Blacks — including those who had done fine on the warm-up — did poorly.

In the second experiment, only Black students were involved, and they all studied in the threatening environment. This time, however, half of the students were asked to begin with a "value affirmation" exercise, during which they chose values that mattered most to them and explained why. The other students were asked to write about a value that mattered little to them. A week later, students did the warm-up and the test. Black students who had written about a meaningful value scored nearly 70% better on the warm-up than black students who had written about other values.

[2348] Taylor, V J., & Walton G. M.
(2011).  Stereotype Threat Undermines Academic Learning.
Personality and Social Psychology Bulletin. 37(8), 1055 - 1067.

A number of studies have demonstrated that negative stereotypes (such as “women are bad at math”) can impair performance in tests. Now a new study shows that this effect extends to learning. The study involved learning to recognize target Chinese characters among sets of two or four. Women who were reminded of the negative stereotypes involving women's math and visual processing ability failed to improve at this search task, while women who were not reminded of the stereotype got faster with practice. When participants were later asked to choose which of two colored squares, imprinted with irrelevant Chinese characters, was more saturated, those in the control group were slower to respond when one of the characters had been a target. However, those trained under stereotype threat showed no such effect, indicating that they had not learned to automatically attend to a target. It’s suggested that the women in the stereotype threat group tried too hard to overcome the negative stereotype, expending more effort but in an unproductive manner.

There are two problems here, it seems. The first is that people under stereotype threat have more invested in disproving the stereotype, and their efforts may be counterproductive. The second, that they are distracted by the stereotype (which uses up some of their precious working memory).

[1686] Rydell, R. J., Shiffrin R. M., Boucher K. L., Van Loo K., & Rydell M. T.
(2010).  Stereotype threat prevents perceptual learning.
Proceedings of the National Academy of Sciences.

Older news items (pre-2010) brought over from the old website

Positive stereotypes can offset negative stereotype effect

A number of studies have now shown that negative stereotypes can impair cognitive performance, mainly through adding to working memory load. A new study has now shown that this effect can be mitigated by the activation of a positive stereotype. The research takes advantage of the fact that we all belong to several social groups. In this case, the relevant groups were ‘female’ and ‘college student’. As usual, when (subtly) reminded of negative stereotypes for women and math, women performed worse. The interesting thing was that this didn’t happen if women were also made aware that college students performed better at math than non-college students. Moreover, this was reflected in working memory capacity. It seems that, when both a positive and a negative stereotype are offered, people will tend to choose the positive stereotype, and the effects of this will cancel out the negative stereotype. It’s also worth noting how easily these stereotypes are activated: effects could be manipulated simply by subtly changing demographic questions asked before the test (and it is not uncommon that test-takers are first required to answer some demographic questions).

[1381] Rydell, R. J., McConnell A. R., & Beilock S. L.
(2009).  Multiple social identities and stereotype threat: Imbalance, accessibility, and working memory..
Journal of Personality and Social Psychology. 96(5), 949 - 966.

http://www.eurekalert.org/pub_releases/2009-05/iu-pob050109.php

Implicit stereotypes and gender identification may affect female math performance

Another study has come out showing that women enrolled in an introductory calculus course who possessed strong implicit gender stereotypes, (for example, automatically associating "male" more than "female" with math ability and math professions) and were likely to identify themselves as feminine, performed worse relative to their female counterparts who did not possess such stereotypes and who were less likely to identify with traditionally female characteristics. Strikingly, a majority of the women participating in the study explicitly expressed disagreement with the idea that men have superior math ability, suggesting that even when consciously disavowing stereotypes, female math students are still susceptible to negative perceptions of their ability.

[969] Kiefer, A. K., & Sekaquaptewa D.
(2007).  Implicit stereotypes, gender identification, and math-related outcomes: a prospective study of female college students.
Psychological Science: A Journal of the American Psychological Society / APS. 18(1), 13 - 18.

http://www.eurekalert.org/pub_releases/2007-01/afps-isa012407.php

Reducing the racial achievement gap

And staying with the same theme, a study that came out six months ago, and recently reviewed on the excellent new Scientific American Mind Matters blog, revealed that a single, 15-minute intervention erased almost half the racial achievement gap between African American and white students. The intervention involved writing a brief paragraph about which value, from a list of values, was most important to them and why. The intervention improved subsequent academic performance for some 70% of the African American students, but none of the Caucasians. The study was repeated the following year with the same results. It is thought that the effect of the intervention was to protect against the negative stereotypes regarding the intelligence and academic capabilities of African Americans.

[1082] Cohen, G. L., Garcia J., Apfel N., & Master A.
(2006).  Reducing the Racial Achievement Gap: A Social-Psychological Intervention.
Science. 313(5791), 1307 - 1310.

Women's math performance affected by theories on sex differences

In a salutary reminder to all researchers into gender and race differences, researchers found that women who received a genetic explanation for female underachievement in math or were reminded of the stereotype about female math underachievement, performed more poorly on math tests than those who received an experiential explanation (such as math teachers treating boys preferentially during the first years of math education) or were led to believe there are no sex differences in math.

[1024] Dar-Nimrod, I., & Heine S. J.
(2006).  Exposure to Scientific Theories Affects Women's Math Performance.
Science. 314(5798), 435 - 435.

http://www.eurekalert.org/pub_releases/2006-10/uobc-wmp101306.php

Interactions with other races can impair mental capacity in the strongly prejudiced

A new approach on an old theme — the effect of stress on cognitive function. The study looked at the short-term effects of racial prejudice. White college students were assessed for racial bias and then had a conversation with either a black or white person. After the conversation, they were given the Stroop test (participants are presented with color words, which are either in the same color as they name, or not; they are required to respond on the basis of the color of the word, not the name. The test requires a surprising amount of concentration.) For those who had talked with a black person, the greater the amount of racial bias, the worse the student did on the Stroop test. This is assumed to be due to the stress caused by the interaction.

[833] Richeson, J. A., & Shelton N. J.
(2003).  When prejudice does not pay: Effects of Interracial Contact on Executive Function.
Psychological Science. 14(3), 287 - 290.

http://www.eurekalert.org/pub_releases/2003-04/pu-tpo043003.php

Error | About memory

Error

The website encountered an unexpected error. Please try again later.