News Topic hypertension

About these topic collections

I’ve been reporting on memory research for over ten years and these topic pages are simply collections of all the news items I have made on a particular topic. They do not pretend to be in any way exhaustive! I cover far too many areas within memory to come anywhere approaching that. What I aim to do is provide breadth, rather than depth. Outside my own area of cognitive psychology, it is difficult to know how much weight to give to any study (I urge you to read my blog post on what constitutes scientific evidence). That (among other reasons) is why my approach in my news reporting is based predominantly on replication and consistency. It's about the aggregate. So here is the aggregate of those reports I have at one point considered of sufficient interest to discuss. If you know of any research you would like to add to the collection, feel free to write about it in a comment (please provide a reference).

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain. A small pilot study has found an association between JVR and white matter changes in the brains of patients with Alzheimer’s disease and those with mild cognitive impairment. This suggests that cerebral venous outflow impairment might play a role in the development of white matter changes in those with Alzheimer’s.

JVR occurs when the internal jugular vein valves don’t open and close properly, which occurs more frequently in the elderly. The study involved 12 patients with Alzheimer’s disease, 24 with MCI, and 17 age-matched controls. Those with severe JVR were more likely to have hypertension, more and more severe white matter changes, and tended to have higher cerebrospinal fluid volumes.

Further research is needed to validate these preliminary findings.

Chung, C-P. et al. 2013. Jugular Venous Reflux and White Matter Abnormalities in Alzheimer’s Disease: A Pilot Study. Journal of Alzheimer’s Disease, 39 (3), 601-609.

A four-year study involving 1,502 healthy older adults (50+) has found that the frequency of negative interactions with family members (not partners or children) and friends was associated with an increased risk of developing hypertension in women (but not in men). Each increase in the total average negative social interaction score was associated with a 38% increased chance of developing hypertension. Younger older women (51-64) were more affected than those 65 or older.

Two studies help explain why kidney disease increases the risk of cardiovascular diseases such as high blood pressure and vascular calcification. The mediator seems to be a hormone called FGF23, which is sensitive to the level of phosphates in the body.

Phosphate rich foods include processed cheese, Parmesan, cola, baking powder and most processed foods.


Brain scans of 61 older adults (65-90), of whom 30 were cognitively healthy, 24 cognitively impaired and 7 diagnosed with dementia, found that, across all groups, both memory and executive function correlated negatively with brain infarcts, many of which had been clinically silent. The level of amyloid in the brain did not correlate with either changes in memory or executive function, and there was no evidence that amyloid interacted with infarcts to impair thinking.

Bottom line: vascular brain injury was far more important than amyloid burden for memory and executive function. The finding highlights the role of vascular injury in mild cognitive impairment.

Read full report at Futurity

[3320] Marchant NL, R. B. R. (2013).  The aging brain and cognition: Contribution of vascular injury and aβ to mild cognitive dysfunction. JAMA Neurology. 1 - 8.

For those with the Alzheimer’s gene, higher blood pressure, even though within the normal range, is linked to greater brain shrinkage and reduced cognitive ability.

I’ve reported before on the evidence suggesting that carriers of the ‘Alzheimer’s gene’, APOE4, tend to have smaller brain volumes and perform worse on cognitive tests, despite being cognitively ‘normal’. However, the research hasn’t been consistent, and now a new study suggests the reason.

The e4 variant of the apolipoprotein (APOE) gene not only increases the risk of dementia, but also of cardiovascular disease. These effects are not unrelated. Apoliproprotein is involved in the transportation of cholesterol. In older adults, it has been shown that other vascular risk factors (such as elevated cholesterol, hypertension or diabetes) worsen the cognitive effects of having this gene variant.

This new study extends the finding, by looking at 72 healthy adults from a wide age range (19-77).

Participants were tested on various cognitive abilities known to be sensitive to aging and the effects of the e4 allele. Those abilities include speed of information processing, working memory and episodic memory. Blood pressure, brain scans, and of course genetic tests, were also performed.

There are a number of interesting findings:

  • The relationship between age and hippocampal volume was stronger for those carrying the e4 allele (shrinkage of this brain region occurs with age, and is significantly greater in those with MCI or dementia).
  • Higher systolic blood pressure was significantly associated with greater atrophy (i.e., smaller volumes), slower processing speed, and reduced working memory capacity — but only for those with the e4 variant.
  • Among those with the better and more common e3 variant, working memory was associated with lateral prefrontal cortex volume and with processing speed. Greater age was associated with higher systolic blood pressure, smaller volumes of the prefrontal cortex and prefrontal white matter, and slower processing. However, blood pressure was not itself associated with either brain atrophy or slower cognition.
  • For those with the Alzheimer’s variant (e4), older adults with higher blood pressure had smaller volumes of prefrontal white matter, and this in turn was associated with slower speed, which in turn linked to reduced working memory.

In other words, for those with the Alzheimer’s gene, age differences in working memory (which underpin so much of age-related cognitive impairment) were produced by higher blood pressure, reduced prefrontal white matter, and slower processing. For those without the gene, age differences in working memory were produced by reduced prefrontal cortex and prefrontal white matter.

Most importantly, these increases in blood pressure that we are talking about are well within the normal range (although at the higher end).

The researchers make an interesting point: that these findings are in line with “growing evidence that ‘normal’ should be viewed in the context of individual’s genetic predisposition”.

What it comes down to is this: those with the Alzheimer’s gene variant (and no doubt other genetic variants) have a greater vulnerability to some of the risk factors that commonly increase as we age. Those with a family history of dementia or serious cognitive impairment should therefore pay particular attention to controlling vascular risk factors, such as hypertension and diabetes.

This doesn’t mean that those without such a family history can safely ignore such conditions! When they get to the point of being clinically diagnosed as problems, then they are assuredly problems for your brain regardless of your genetics. What this study tells us is that these vascular issues appear to be problematic for Alzheimer’s gene carriers before they get to that point of clinical diagnosis.

A large, long-running study has found cognitive decline and brain lesions are linked to mild retinal damage in older women.

Damage to the retina (retinopathy) doesn’t produce noticeable symptoms in the early stages, but a new study indicates it may be a symptom of more widespread damage. In the ten-year study, involving 511 older women (average age 69), 7.6% (39) were found to have retinopathy. These women tended to have lower cognitive performance, and brain scans revealed that they had more areas of small vascular damage within the brain — 47% more overall, and 68% more in the parietal lobe specifically. They also had more white matter damage. They did not have any more brain atrophy.

These correlations remained after high blood pressure and diabetes (the two major risk factors for retinopathy) were taken into account. It’s estimated that 40-45% of those with diabetes have retinopathy.

Those with retinopathy performed similarly to those without on a visual acuity test. However, testing for retinopathy is a simple test that should routinely be carried out by an optometrist in older adults, or those with diabetes or hypertension.

The findings suggest that eye screening could identify developing vascular damage in the brain, enabling lifestyle or drug interventions to begin earlier, when they could do most good. The findings also add to the reasons why you shouldn’t ignore pre-hypertensive and pre-diabetic conditions.

A more rigorous measurement of diet finds that dietary factors account for nearly as much brain shrinkage as age, education, APOE genotype, depression and high blood pressure combined.

The study involved 104 healthy older adults (average age 87) participating in the Oregon Brain Aging Study. Analysis of the nutrient biomarkers in their blood revealed that those with diets high in omega 3 fatty acids and in vitamins C, D, E and the B vitamins had higher scores on cognitive tests than people with diets low in those nutrients, while those with diets high in trans fats were more likely to score more poorly on cognitive tests.

These were dose-dependent, with each standard deviation increase in the vitamin BCDE score ssociated with a 0.28 SD increase in global cognitive score, and each SD increase in the trans fat score associated with a 0.30 SD decrease in global cognitive score.

Trans fats are primarily found in packaged, fast, fried and frozen food, baked goods and margarine spreads.

Brain scans of 42 of the participants found that those with diets high in vitamins BCDE and omega 3 fatty acids were also less likely to have the brain shrinkage associated with Alzheimer's, while those with high trans fats were more likely to show such brain atrophy.

Those with higher omega-3 scores also had fewer white matter hyperintensities. However, this association became weaker once depression and hypertension were taken into account.

Overall, the participants had good nutritional status, but 7% were deficient in vitamin B12 (I’m surprised it’s so low, but bear in mind that these are already a select group, being healthy at such an advanced age) and 25% were deficient in vitamin D.

The nutrient biomarkers accounted for 17% of the variation in cognitive performance, while age, education, APOE genotype (presence or absence of the ‘Alzheimer’s gene’), depression and high blood pressure together accounted for 46%. Diet was more important for brain atrophy: here, the nutrient biomarkers accounted for 37% of the variation, while the other factors accounted for 40% (meaning that diet was nearly as important as all these other factors combined!).

The findings add to the growing evidence that diet has a significant role in determining whether or not, and when, you develop Alzheimer’s disease.

New research confirms the correlation between lower neighborhood socioeconomic status and lower cognitive function in older adults, and accounts for most of it through vascular health, lifestyle, and psychosocial factors.

In the last five years, three studies have linked lower neighborhood socioeconomic status to lower cognitive function in older adults. Neighborhood has also been linked to self-rated health, cardiovascular disease, and mortality. Such links between health and neighborhood may come about through exposure to pollutants or other environmental stressors, access to alcohol and cigarettes, barriers to physical activity, reduced social support, and reduced access to good health and social services.

Data from the large Women’s Health Initiative Memory Study has now been analyzed to assess whether the relationship between neighborhood socioeconomic status can be explained by various risk and protective factors for poor cognitive function.

Results confirmed that higher neighborhood socioeconomic status was associated with higher cognitive function, even after individual factors such as age, ethnicity, income, education, and marital status have been taken into account. A good deal of this was explained by vascular factors (coronary heart disease, diabetes, stroke, hypertension), health behaviors (amount of alcohol consumed, smoking, physical activity), and psychosocial factors (depression, social support). Nevertheless, the association was still (barely) significant after these factors were taken account of, suggesting some other factors may also be involved. Potential factors include cognitive activity, diet, and access to health services.

In contradiction of earlier research, the association appeared to be stronger among younger women. Consistent with other research, the association was stronger for non-White women.

Data from 7,479 older women (65-81) was included in the analysis. Cognitive function was assessed by the Modified MMSE (3MSE). Neighborhood socioeconomic status was assessed on the basis of: percentage of adults over 25 with less than a high school education, percentage of male unemployment, percentage of households below the poverty line, percentage of households receiving public assistance, percentage of female-headed households with children, and median household income. Around 87% of participants were White, 7% Black, 3% Hispanic, and 3% other. Some 92% had graduated high school, and around 70% had at least some college.

[2523] Shih, R. A., Ghosh-Dastidar B., Margolis K. L., Slaughter M. E., Jewell A., Bird C. E., et al. (2011).  Neighborhood Socioeconomic Status and Cognitive Function in Women. Am J Public Health. 101(9), 1721 - 1728.


Lang IA, Llewellyn DJ, Langa KM, Wallace RB, Huppert FA, Melzer D. 2008. Neighborhood deprivation, individual socioeconomic status, and cognitive function in older people: analyses from the English Longitudinal Study of Ageing. J Am Geriatr Soc., 56(2), 191-198.

Sheffield KM, Peek MK. 2009. Neighborhood context and cognitive decline in older Mexican Americans: results from the Hispanic Established Populations for Epidemiologic Studies of the Elderly. Am J Epidemiol., 169(9), 1092-1101.

Wight RG, Aneshensel CS, Miller-Martinez D, et al. 2006. Urban neighborhood context, educational attainment, and cognitive function among older adults. Am J Epidemiol., 163(12), 1071-1078.

Consistent with evidence linking obesity and impaired cognition, a new study has found improved cognition in obese patients after bariatric surgery.

Growing evidence links obesity and poorer cognitive performance. Many factors associated with obesity, such as high blood pressure, type 2 diabetes and sleep apnea, damage the brain.

A study involving109 bariatric surgery patients and 41 obese control subjects has found that the bariatric surgery patients demonstrated improved memory and concentration 12 weeks after surgery, improving from the slightly impaired range to the normal range. That of the obese controls actually declined over this period. The improvement of those who had surgery seemed to be particularly related to improved blood pressure.

Study participants will be tested one year and two years after surgery.

[2224] Gunstad, J., Strain G., Devlin M. J., Wing R., Cohen R. A., Paul R. H., et al. (2010).  Improved memory function 12 weeks after bariatric surgery. Surgery for Obesity and Related Diseases.

New findings reveal that mild cognitive impairment is more likely to develop into Alzheimer’s if vascular risk factors are present, especially if untreated.

A study following 837 people with MCI, of whom 414 (49.5%) had at least one vascular risk factor, has found that those with risk factors such as high blood pressure, diabetes, cerebrovascular disease and high cholesterol were twice as likely to develop Alzheimer's disease. Over five years, 52% of those with risk factors developed Alzheimer's, compared to 36% of those with no risk factors In total, 298 people (35.6%) developed Alzheimer's.

However, of those with vascular risk factors, those receiving full treatment for their vascular problems were 39% less likely to develop Alzheimer's disease than those receiving no treatment, and those receiving some treatments were 26% less likely to develop the disease.

Treatment of risk factors included using high blood pressure medicines, insulin, cholesterol-lowering drugs and diet control. Smoking and drinking were considered treated if the person stopped smoking or drinking at the start of the study.

Older adults who have a history of severe headaches are more likely to have a greater number of brain lesions, but do not show greater cognitive impairment (within the study time-frame).

Lesions of the brain microvessels include white-matter hyperintensities and the much less common silent infarcts leading to loss of white-matter tissue. White-matter hyperintensities are common in the elderly, and are generally regarded as ‘normal’ (although a recent study suggested we should be less blasé about them — that ‘normal’ age-related cognitive decline reflects the presence of these small lesions). However, the degree of white-matter lesions is related to the severity of decline (including increasing the risk of Alzheimer’s), and those with hypertension or diabetes are more likely to have a high number of them.

A new study has investigated the theory that migraines might also lead to a higher number of white-matter hyperintensities. The ten-year French population study involved 780 older adults (65+; mean age 69). A fifth of the participants (21%) reported a history of severe headaches, of which 71% had migraines.

Those with severe headaches were twice as likely to have a high quantity of white-matter hyperintensities as those without headaches. However, there was no difference in cognitive performance between the groups. Those who suffered from migraines with aura (2% of the total), also showed an increased number of silent cerebral infarcts — a finding consistent with other research showing that people suffering from migraine with aura have an increased risk of cerebral infarction (or strokes). But again, no cognitive decline was observed.

The researchers make much of their failure to find cognitive impairment, but I would note that, nevertheless, the increased number of brain lesions does suggest that, further down the track, there is likely to be an effect on cognitive performance. Still, headache sufferers can take comfort in the findings, which indicate the effect is not so great that it shows up in this decade-long study.

A long-running study has found cholesterol levels at in mid-life were not linked to later dementia in women, but marked decline in cholesterol level over the study period was.

Research into the link, if any, between cholesterol and dementia, has been somewhat contradictory. A very long-running Swedish study may explain why. The study, involving 1,462 women aged 38-60 in 1968, has found that cholesterol measured in middle or old age showed no link to dementia, but there was a connection between dementia and the rate of decline in cholesterol level. Those women whose cholesterol levels decreased the most from middle to older age were more than twice as likely to develop dementia as those whose cholesterol levels increased or stayed the same (17.5% compared to 8.9%).After 32 years, 161 women had developed dementia.

Later in life, women with slightly higher body mass index, higher levels of cholesterol and higher blood pressure tend to be healthier overall than those whose weight, cholesterol and blood pressure are too low. But it is unclear whether "too low" cholesterol, BMI and blood pressure are risk factors for dementia or simply signs that dementia is developing, for reasons we do not yet understand.

On the other hand, a recent rat study has found that consuming a high cholesterol diet for five months caused memory impairment, cholinergic dysfunction, inflammation, enhanced cortical beta-amyloid and tau and induced microbleedings — all of which is strikingly similar to Alzheimer's pathology. And this finding is consistent with a number of other studies. So it does seem clear that the story of how exactly cholesterol impacts Alzheimer’s is a complex one that we are just beginning to unravel.

In light of other research indicating that the response of men and women to various substances (eg caffeine) may be different, we should also bear in mind that the results of the Swedish study may apply only to women.

A large study has found that women with high blood pressure had significantly higher amounts of white matter lesions (a risk factor for dementia) 8 years later.

Part of the Women's Health Initiative study looking at the effect of hormone therapy on thinking and memory in postmenopausal women, involving over 1400 women, has found those who had high blood pressure at the start of the study (eight years earlier) had significantly higher amounts of white matter lesions. Damage to white matter seems to be an independent risk factor for dementia. The finding adds to evidence suggesting that preventing hypertension helps protect against dementia. High blood pressure is common in the U.S. — of the nearly 99,000 women enrolled in the WHI study, 37.8% had hypertension. You can watch the researcher discussing the findings at

Kuller, L. H., Margolis, K. L., Gaussoin, S. A., Bryan, N. R., Kerwin, D., Limacher, M., et al. (2009). Relationship of Hypertension, Blood Pressure, and Blood Pressure Control With White Matter Abnormalities in the Women's Health Initiative Memory Study (WHIMS) MRI Trial. The Journal of Clinical Hypertension, 9999(9999). doi: 10.1111/j.1751-7176.2009.00234.x.

A large five-year study concludes that late-life hypertension doubles the risk of dementia in those with executive dysfunction only (but not for those with memory dysfunction alone or memory and executive dysfunction).

Midlife hypertension has been confirmed as a risk factor for the development of dementia in late life, but there have been conflicting findings about the role of late-life hypertension. Now a five-year study involving 990 older adults (average age 83) with cognitive impairment but no dementia, has found that dementia developed at around the same rate among participants with and without hypertension, among those with memory dysfunction alone and those with both memory and executive dysfunction. However, among patients with executive dysfunction only, presence of hypertension was associated with double the risk of developing dementia (57.7 percent of those with high blood pressure progressed to dementia, vs. 28 percent of those without). The findings suggest that efforts to control to hypertension should be especially targeted to this group.

Alzheimer's mice significantly benefited from taking a drug used to treat hypertension.

Two mouse experiments have found that the drug carvedilol, prescribed for the treatment of hypertension, significantly improved synaptic transmission in Alzheimer's disease-type brains, and at a behavioral level significantly improved learning and memory.

[1691] Wang, J., Ono K., Dickstein D. L., Arrieta-Cruz I., Zhao W., Qian X., et al. (Submitted).  Carvedilol as a potential novel agent for the treatment of Alzheimer's disease. Neurobiology of Aging. In Press, Corrected Proof,

Arrieta-Cruz, I. et al. 2010. Carvedilol Reestablishes Long-Term Potentiation in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimer's Disease, 21 (2), in press.

Older news items (pre-2010) brought over from the old website

High blood pressure linked to memory problems in middle age

A study involving nearly 20,000 people age 45 and older, of whom nearly half were taking medication for high blood pressure, has found that those with high diastolic blood pressure (the bottom number of a blood pressure reading) were more likely to have cognitive impairment than those with normal diastolic readings. For every 10 point increase in the reading, the odds of a person having cognitive problems was 7% higher. There was no correlation with systolic blood pressure. The results were adjusted for age, smoking status, exercise level, education, diabetes and high cholesterol. High diastolic blood pressure is known to lead to weakening of small arteries in the brain.

[750] Tsivgoulis, G., Alexandrov A. V., Wadley V. G., Unverzagt F. W., Go R. C. P., Moy C. S., et al. (2009).  Association of higher diastolic blood pressure levels with cognitive impairment. Neurology. 73(8), 589 - 595.

A diet that may reduce age-related cognitive decline

The Dietary Approaches to Stop Hypertension (DASH) diet lowers blood pressure and is often recommended by physicians to people with high blood pressure or pre-hypertension. An 11-year study of over 3800 seniors found that those with higher DASH diet adherence scores had higher cognitive scores at the beginning of the study and increasingly so over time. Four of the nine food-group/nutrient components were independently associated with cognitive scores -- vegetables, whole grains, low-fat dairy, nut/legumes. When a score based on just these four components was used, the difference between those in the highest quintile and those in the lowest was even greater, particularly by the end of the study.

Wengreen, H.J. et al. 2009. DASH diet adherence scores and cognitive decline and dementia among aging men and women: Cache County study of Memory Health and Aging. Presented at the Alzheimer's Association International Conference on Alzheimer's Disease July 11-16 in Vienna.

Factors helping you maintain cognitive function in old age

An 8-year study of over 2,500 seniors in their 70s, has found that 53% showed normal age-related decline, 16% showed major cognitive decline, and an encouraging 30% had no change or improved on the tests over the years. The most important factors in determining whether a person maintained their cognitive health was education and literacy: those with a ninth grade literacy level or higher were nearly five times as likely to stay sharp than those with lower literacy levels; those with at least a high school education were nearly three times as likely to stay sharp as those who have less education. Lifestyle factors were also significant: non-smokers were nearly twice as likely to stay sharp as smokers; those who exercised moderately to vigorously at least once a week were 30% more likely to maintain their cognitive function than those who do not exercise that often; people working or volunteering and people who report living with someone were 24% more likely to maintain cognitive function.

[909] Ayonayon, H. N., Harris T. B., For the Health ABC Study, Yaffe K., Fiocco A. J., Lindquist K., et al. (2009).  Predictors of maintaining cognitive function in older adults: The Health ABC Study. Neurology. 72(23), 2029 - 2035.

Hypertension in children linked to cognitive problems

A study of 32 newly diagnosed hypertensive children and adolescents (10 to 18 years old) plus 32 matched children with normal blood pressure has revealed that, according to parental assessment, those with high blood pressure scored significantly lower on executive function — that is, were poorer at planning, at complicated goal-directed tasks, and had more working memory problems. Additionally, more than half the children with both hypertension and obesity demonstrated clinically significant anxiety and depression.

Lande, M.B. et al. 2009. Parental Assessments of Internalizing and Externalizing Behavior and Executive Function in Children with Primary Hypertension. Journal of Pediatrics, 154 (2), 207-212.

High blood pressure may make it difficult for the elderly to think clearly

A study involving 36 community-dwelling elderly (60-87 years old) whose blood pressure and cognitive functioning was monitored for 60 days has found that those with high blood pressure tended to perform more poorly on one of the three cognitive tasks, and this was particularly so when their blood pressure was higher than normal. The finding suggests that high blood pressure impacts on inductive reasoning, and thus the ability to work flexibly with unfamiliar information and find solutions. It also suggests that, for those with high blood pressure, such reasoning will be particularly difficult when they are stressed.

Gamaldo, A.A., Weatherbee, S.R. & Allaire, J.C. 2008. Exploring the Within-Person Coupling of Blood Pressure and Cognition in Elders. Journal of Gerontology: Psychological Science, 63, 386-389.

High blood pressure associated with risk for mild cognitive impairment

A study of nearly 1000 older adults (average age 76.3) without mild cognitive impairment at the start of the study found that over the follow-up period (average: 4.7 years), 334 individuals developed mild cognitive impairment, of which 160 were amnestic (reduced memory) and 174 were non-amnestic. Hypertension (high blood pressure) was associated with an increased risk of non-amnestic mild cognitive impairment; but not with amnestic mild cognitive impairment.

[712] Reitz, C., Tang M. - X., Manly J., Mayeux R., & Luchsinger J. A. (2007).  Hypertension and the Risk of Mild Cognitive Impairment. Arch Neurol. 64(12), 1734 - 1740.

Memory tasks require more coordinated brain blood flow for people with high blood pressure

Previous studies have found an association between high blood pressure and cognitive decline in older adults, but the evidence hasn’t been entirely consistent. Now a new study helps explain why the situation is not entirely straightforward. It appears that people with high blood pressure required more blood flow to the parts of the brain that support memory function than those with normal blood pressure. Moreover, and surprisingly, it turned out that antihypertensive medication actually made it worse, increasing the inefficiency of the brain’s work during memory tasks.

The findings were reported at the American Heart Association’s 61st Annual Fall Conference of the Council for High Blood Pressure Research.

Lowering blood pressure doesn't prevent cognitive impairment, dementia

A review of three large-scale studies of patients with hypertension who were treated with either medication or lifestyle strategies found no convincing evidence that lowering blood pressure prevents the development of dementia or cognitive impairment in hypertensive patients without apparent prior cerebrovascular disease. However, there is some evidence that midlife hypertension but not late life hypertension is related to cognitive decline; these studies involved patients aged 60 and older.

McGuiness, B., et al. The effects of blood pressure lowering on development of cognitive impairment and dementia in patients without apparent prior cerebrovascular disease. The Cochrane Database of Systematic Reviews 2006, Issue 2.

Review supports link between lifestyle factors and cognitive function in older adults

A review of 96 papers involving 36 very large, ongoing epidemiological studies in North America and Europe looking at factors involved in maintaining cognitive and emotional health in adults as they age has concluded that controlling cardiovascular risk factors, such as reducing blood pressure, reducing weight, reducing cholesterol, treating (or preferably avoiding) diabetes, and not smoking, is important for maintaining brain health as we age. The link between hypertension and cognitive decline was the most robust across studies. They also found a consistent close correlation between physical activity and brain health. However, they caution that more research is needed before specific recommendations can be made about which types of exercise and how much exercise are beneficial. They also found protective factors most consistently reported for cognitive health included higher education level, higher socio-economic status, emotional support, better initial performance on cognitive tests, better lung capacity, more physical exercise, moderate alcohol use, and use of vitamin supplements. Psychosocial factors, such as social disengagement and depressed mood, are associated with both poorer cognitive and emotional health in late life. Increased mental activity throughout life, such as learning new things, may also benefit brain health.

[296] Wagster, M., Hendrie H., Albert M., Butters M., Gao S., Knopman D. S., et al. (2006).  The NIH Cognitive and Emotional Health ProjectReport of the Critical Evaluation Study Committee. Alzheimer's and Dementia. 2(1), 12 - 32.

Uncontrolled high blood pressure means more cognitive problems in old age

A study involving a subset of men (average age 67 years) in the VA Normative Aging Study has found that those men with uncontrolled hypertension performed significantly worse on tests of verbal fluency and short-term memory. Those whose hypertension was controlled did as well as those with normal blood pressure. In the United States, hypertension affects 60% of adults age 60 and older, and a high proportion of these are untreated or inadequately treated.

Brady, C.B., Spiro, A. III & Gaziano, J.M. 2005. Effects of Age and Hypertension Status on Cognition: The Veterans Affairs Normative Aging Study. Neuropsychology, 19 (6).

High blood pressure has stronger effect on cognitive function in African-Americans

Analysis of a large longitudinal study (the Maine-Syracuse Longitudinal Study 1976—2002) has found significant associations of high blood pressure to lower cognitive performance in the areas of abstract reasoning, psychomotor skills and visual organization skills. This association, moreover, was significantly greater for African-Americans, although it should be noted that there were only 147 African-Americans among the 1,563 participants. The effect was independent of age.

[795] Robbins, M. A., Elias M. F., Elias P. K., & Budge M. M. (2005).  Blood pressure and cognitive function in an African-American and a Caucasian-American sample: the Maine-Syracuse Study. Psychosomatic Medicine. 67(5), 707 - 714.

High blood pressure may be a factor in "senior moments"

An imaging study of seniors (average age 60) found that those with high blood pressure showed reduced blood flow to active brain areas when performing various everyday memory tasks, such as looking up a phone number then walking to another room to pick up the phone and dial the number. The diminished blood flow correlated to slightly worse scores on the memory tests. The differences weren’t large, but may help account for "senior moments" - memory problems commonly associated with age. It’s estimated that as many as a third of those with high blood pressure are not aware they have it.

Jennings, J.R., Muldoon, M.F., Meltzer, C.C., Ryan, C. & Price, J. 2003. Human Cerebral Blood Flow Responses to Information Processing Tasks are Decreased in Hypertensives Relative to Normotensives. Report presented at the American Heart Association's 57th Annual High Blood Pressure Research Conference, September 23.

Effects of high blood pressure on cognition may have been overstated

Epidemiological studies have suggested hypertensive patients perform worse than individuals with normal blood pressure on cognition tests. A new study has investigated performance on specific cognitive tasks (visual and memory search involving computer displays) by those with high blood pressure who were not on medication and had no detectable cardiovascular disease. Participants ranged in age from 20 to 80. Contrary to expectation, high blood pressure slowed performance only in the middle-aged group (40-59), not in those younger or older.

Madden, D., Langley, L., Thurston, R., Whiting, W. & Blumenthal, J. 2003. Interaction of Blood Pressure and Adult Age in Memory Search and Visual Search Performance. Aging, Neuropsychology and Cognition, 10 (4), 241-54.

Treatment to lower blood pressure reduces risk of cognitive decline in stroke patients

High blood pressure and stroke are associated with increased risks of dementia and cognitive impairment. In a study aimed to determine whether blood pressure lowering would reduce the risks of dementia and cognitive decline among individuals with cerebrovascular disease, 6105 people with prior stroke or transient ischemic attack were given either active treatment (perindopril for all participants and indapamide for those with neither an indication for nor a contraindication to a diuretic) or matching placebo(s). Over some 4 years, dementia was found in 6.3% of those given active treatment and 7.1% of those in the placebo group. Cognitive decline occurred in 9.1% of the actively treated group and 11.0% of the placebo group. The researchers concluded that blood pressure lowering with perindopril and indapamide therapy was helpful for those with cerebrovascular disease, in terms of reduced risks of dementia and cognitive decline.

[603] The PROGRESS Collaborative Group* (2003).  Effects of Blood Pressure Lowering With Perindopril and Indapamide Therapy on Dementia and Cognitive Decline in Patients With Cerebrovascular Disease. Arch Intern Med. 163(9), 1069 - 1075.

Age-related changes in the brain's white matter affect cognitive function

From around age 60, "white-matter lesions" appear in the brain, significantly affecting cognitive function. But without cognitive data from childhood, it is hard to know how much of the difference in cognitive abilities between elderly individuals is due to aging. A longitudinal study has been made possible by the Scottish Mental Survey of 1932, which gave 11-year-olds a validated cognitive test. Scottish researchers have tracked down healthy living men and women who took part in this Survey and retested 83 participants. Testing took place in 1999, when most participants were 78 years old.
It was found that the amount of white-matter lesions made a significant contribution to general cognitive ability differences in old age, independent of prior ability. The amount of white-matter lesions contributed 14.4% of the variance in cognitive scores; early IQ scores contributed 13.7%. The two factors were independent.
Although white-matter lesions are viewed as a normal part of aging, they are linked with other health problems, in particular to circulatory problems (including hypertension, diabetes, heart disease and cardiovascular risk factors).

[442] Deary, I. J., Leaper S. A., Murray A. D., Staff R. T., & Whalley L. J. (2003).  Cerebral white matter abnormalities and lifetime cognitive change: a 67-year follow-up of the Scottish Mental Survey of 1932. Psychology and Aging. 18(1), 140 - 148.

Sunflower seeds helpful in reducing hypertension and associated cognitive impairment

Research in rats has found that linoleic acid improved not only blood pressure, but also hypertension-induced memory decline, suggesting that the early incorporation of linoleic acid in the diet, may not only help in controlling hypertension, but may also improve hypertension-induced cognitive impairment. Linoleic acid is found in vegetable seed oils, such as safflower, sunflower, and hemp seed.

Holloway, V. 2002. Effects of early nutritional supplementation of linoleic acid in Hypertension. Paper presented at an American Physiological Society (APS) conference, "The Power of Comparative Physiology: Evolution, Integration and Application", August 24-28 in San Diego, CA.

High blood pressure increases risk of cognitive decline in older adults

A large-scale six-year study of people aged 40 to 70 years old found that people with diabetes and high blood pressure are more likely to experience cognitive decline. Diabetes was associated with greater cognitive decline for those younger than 58 as well as those older than 58, but high blood pressure was a risk factor only for the 58 and older group.

[2534] Knopman, D. S., Boland L. L., Mosley T., Howard G., Liao D., Szklo M., et al. (2001).  Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 56(1), 42 - 48.

Untreated hypertension linked to severe cognitive decline in older adults

A large-scale study of French people aged 59 to 71 found that, after four years, 21.7% of those with untreated high blood pressure experienced severe cognitive decline. Of those with high blood pressure whose treatment didn't bring the blood pressure down to normal, 12.5% had severe cognitive decline. Of those whose high blood pressure was successfully treated, 7.8% had severe cognitive decline. Only 7.3% of those with normal blood pressure had severe cognitive decline.

Tzourio, C., Dufouil, C., Ducimetière, P., Alpérovitch, A. and for the EVA Study Group. 1999. Cognitive decline in individuals with high blood pressure: A longitudinal study in the elderly. Neurology, 53, 1948.

Add comment

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

More information about formatting options

By submitting this form, you accept the Mollom privacy policy.