Dyslexia Therapy

It’s generally agreed among researchers that the most efficient intervention for dyslexia is to get the child reading more — the challenge is to find ways that enable that. Training programs typically target specific component skills, which are all well and good but leave the essential problem untouched: the children still need to read more. A new study shows that a very simple manipulation substantially improves reading in a large, unselected group of dyslexic children.

The study involved 74 French and Italian children — the two groups enabling researchers to compare a transparent writing system (Italian) with a relatively opaque one (French). The children had to read 24 short, meaningful, but unrelated, sentences. The text was written in Times New Roman 14 point. Standard interletter spacing was compared to spacing increased by 2.5 points. Space between words and lines was also increased commensurately. Each child read the same sentences in two sessions, two weeks apart. In one session, standard spacing was used, and in the other, increased spacing. Order of the sessions was of course randomly assigned.

The idea behind this is that dyslexic readers seem to be particularly affected by crowding. Crowding — interference from flanking letters — mostly affects peripheral vision in normal adult readers, but has been shown to be a factor in central vision in school-aged children. Standard letter spacing appears to be optimal for skilled adult readers.

The study found that increased spacing improved accuracy in reading the text by a factor of two. Moreover, this group effect conceals substantial individual differences. Those who had the most difficulties with the text benefitted the most from the extra spacing.

Reading speed also increased. In this case, despite the 2-week interval, there was an order effect: those who read the normal text first were faster on the 2nd (spaced) reading, while those who read the spaced text first read the 2nd (normal) text at the same speed. Analysis that removed the effects of repetition found that spacing produced a speed improvement of about 0.3 syllables a second, which corresponds to the average improvement across an entire school year for Italian dyslexic children.

There was no difference between the Italian and French children, indicating that this manipulation works in both transparent (in which letters and sounds match) and opaque writing systems (like English).

Subsequent comparison of 30 of the Italian children (mean age 11) with younger normally-developing children (mean age 8) matched for reading level and IQ found that spacing benefited only the dyslexic children.

A further experiment involving some of the Italian dyslexic children compared the spaced condition with normal text that had the same line spacing as the spaced text. This confirmed that it was the letter spacing that was critical.

These findings point to a very simple way of giving dyslexic children the practice they need in reading without any training. It is not suggested that it replaces specific-skill training, but rather augments it.

[3017] Zorzi, M., Barbiero C., Facoetti A., Lonciari I., Carrozzi M., Montico M., et al.
(2012).  Extra-large letter spacing improves reading in dyslexia.
Proceedings of the National Academy of Sciences. 109(28), 11455 - 11459.

Music-based training 'cartoons' improved preschoolers’ verbal IQ

A study in which 48 preschoolers (aged 4-6) participated in computer-based, cognitive training programs that were projected on a classroom wall and featured colorful, animated cartoon characters delivering the lessons, has found that 90% of those who received music-based training significantly improved their scores on a test of verbal intelligence, while those who received visual art-based training did not.

The music-based training involved a combination of motor, perceptual and cognitive tasks, and included training on rhythm, pitch, melody, voice and basic musical concepts. Visual art training emphasized the development of visuo-spatial skills relating to concepts such as shape, color, line, dimension and perspective. Each group received two one-hour training sessions each day in classroom, over four weeks.

Children’s abilities and brain function were tested before the training and five to 20 days after the end of the programs. While there were no significant changes, in the brain or in performance, in the children who participated in the visual art training, nearly all of those who took the music-based training showed large improvements on a measure of vocabulary knowledge, as well as increased accuracy and reaction time. These correlated with changes in brain function.

The findings add to the growing evidence for the benefits of music training for intellectual development, especially in language.

Musical aptitude relates to reading ability through sensitivity to sound patterns

Another new study points to one reason for the correlation between music training and language acquisition. In the study, 42 children (aged 8-13) were tested on their ability to read and recognize words, as well as their auditory working memory (remembering a sequence of numbers and then being able to quote them in reverse), and musical aptitude (both melody and rhythm). Brain activity was also measured.

It turned out that both music aptitude and literacy were related to the brain’s response to acoustic regularities in speech, as well as auditory working memory and attention. Compared to good readers, poor readers had reduced activity in the auditory brainstem to rhythmic rather than random sounds. Responsiveness to acoustic regularities correlated with both reading ability and musical aptitude. Musical ability (largely driven by performance in rhythm) was also related to reading ability, and auditory working memory to both of these.

It was calculated that music skill, through the functions it shares with reading (brainstem responsiveness to auditory regularities and auditory working memory) accounts for 38% of the difference in reading ability between children.

These findings are consistent with previous findings that auditory working memory is an important component of child literacy, and that positive correlations exist between auditory working memory and musical skill.

Basically what this is saying, is that the auditory brainstem (a subcortical region — that is, below the cerebral cortex, where our ‘higher-order’ functions are carried out) is boosting the experience of predictable speech in better readers. This fine-tuning may reflect stronger top-down control in those with better musical ability and reading skills. While there may be some genetic contribution, previous research makes it clear that musicians’ increased sensitivity to sound patterns is at least partly due to training.

In other words, giving young children music training is a good first step to literacy.

The children were rated as good readers if they scored 110 or above on the Test of Word Reading Efficiency, and poor readers if they scored 90 or below. There were 8 good readers and 21 poor readers. Those 13 who scored in the middle were excluded from group analyses. Good and poor readers didn’t differ in age, gender, maternal education, years of musical training, extent of extracurricular activity, or nonverbal IQ. Only 6 of the 42 children had had at least a year of musical training (of which one was a poor reader, three were average, and two were good).

Auditory brainstem responses were gathered to the speech sound /da/, which was either presented with 100% probability, or randomly interspersed with seven other speech sounds. The children heard these sounds through an earpiece in the right ear, while they listened to the soundtrack of a chosen video with the other ear.

[2603] Moreno, S., Bialystok E., Barac R., Schellenberg E. Glenn, Cepeda N. J., & Chau T.
(2011).  Short-Term Music Training Enhances Verbal Intelligence and Executive Function.
Psychological Science. 22(11), 1425 - 1433.

Strait, Dana L, Jane Hornickel, and Nina Kraus. “Subcortical processing of speech regularities underlies reading and music aptitude in children.” Behavioral and brain functions : BBF 7, no. 1 (October 17, 2011): 44. http://www.ncbi.nlm.nih.gov/pubmed/22005291.

Full text is available at http://www.behavioralandbrainfunctions.com/content/pdf/1744-9081-7-44.pd...

A review of the many recent studies into the effects of music training on the nervous system strongly suggests that the neural connections made during musical training also prime the brain for other aspects of human communication, including learning. It’s suggested that actively engaging with musical sounds not only helps the plasticity of the brain, but also helps provide a stable scaffolding of meaningful patterns. Playing an instrument primes the brain to choose what is relevant in a complex situation. Moreover, it trains the brain to make associations between complex sounds and their meaning — something that is also important in language. Music training can provide skills that enable speech to be better heard against background noise — useful not only for those with some hearing impairment (it’s a common difficulty as we get older), but also for children with learning disorders. The review concludes that music training tones the brain for auditory fitness, analogous to the way physical exercise tones the body, and that the evidence justifies serious investment in music training in schools.

[1678] Kraus, N., & Chandrasekaran B.
(2010).  Music training for the development of auditory skills.
Nat Rev Neurosci. 11(8), 599 - 605.

A digital designer is developing a toolkit to help teachers more effectively assist children with dyslexia. The tool aims to help children remember the sound connected to the letter. For example, you can scroll over the letter "p," and the "p" will then morph to display common items associated with the "puh" sound: (peach, peppermint, pie, pea and piano). Or when moving over a long vowel, the vowel lengthens horizontally; silent letters are shadowed or repel the mouse. And so on. The toolkit has not yet been tested, but I do like the idea. You can catch a 2-minute video showing how it works.

The project, titled "Reading by Design: Visualizing Phonemic Sound for Dyslexic Readers 9-11 Years Old," was presented at the Southwest International Reading Association Regional Conference in Oklahoma City, Okla., on Feb. 5, 2010.

Older news items (pre-2010) brought over from the old website

Remedial reading program improves brain wiring in children

An imaging study involving 72 children aged 8 to 10 has provided the first evidence that intensive instruction to improve reading skills in young children causes the brain to physically rewire itself. The study found that the ability of white matter tracts to transmit signals efficiently improved substantially after the children received six months (100 hours) of remedial training. Moreover, those who showed the most white matter change also showed the most improvement in reading ability. Previous research has found that both children and adults with reading difficulty display areas of compromised white matter.

[963] Keller, T. A., & Just M A.
(2009).  Altering Cortical Connectivity: Remediation-Induced Changes in the White Matter of Poor Readers.
Neuron. 64(5), 624 - 631.

http://www.physorg.com/news179584529.html
http://www.npr.org/templates/story/story.php?storyId=121253104

Pre-school exercises can prevent dyslexia

A study comparing 107 children with either parent dyslexic and a control group of children without a hereditary predisposition to dyslexia has found that half the children with a dyslexic parent found learning to read more challenging than children in the control group. The predictors of reading and writing difficulties were evident primarily in two contexts: as a delayed ability to perceive and mentally process the subtleties of speech sound, and as a sluggishness in naming familiar, visually presented objects. The difficulties children experience when learning to read can be significantly reduced through training, and the CoE in Learning and Motivation Research has developed computer game-like learning environments to aid preventive training, and made them available on the internet free of charge. It’s recommended that the child start these exercises before school, if possible.  The exercises and tools are all available at www.lukimat.fi.

The results were presented at the Academy of Finland's science breakfast on 21 August.

http://www.eurekalert.org/pub_releases/2008-08/aof-pae082708.php

Remedial instruction can close gap between good, poor readers

A brain imaging study of poor readers has found that 100 hours of remedial instruction not only improved the skills of struggling readers, but also changed the way their brains activated when they comprehended written sentences. 25 fifth-graders who were poor readers worked in groups of three for an hour a day with a reading "personal trainer," a teacher specialized in administering a remedial reading program. The training included both word decoding exercises in which students were asked to recognize the word in its written form and tasks in using reading comprehension strategies. Brain scans while the children were reading revealed that the parietotemporal region — responsible for decoding the sounds of written language and assembling them into words and phrases that make up a sentence — was significantly less activated among the poor readers than in the control group. The increases in activation seen as a result of training were still evident, and even greater, a year later.
Although dyslexia is generally thought of as caused by difficulties in the visual perception of letters, leading to confusions between letters like "p" and "d", such difficulties occur in only about 10% of the cases. Most commonly, the problem lies in relating the visual form of a letter to its sound.

[702] Meyler, A., Keller T. A., Cherkassky V. L., Gabrieli J. D. E., & Just M A.
(2008).  Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity.
Neuropsychologia. 46(10), 2580 - 2592.

http://www.eurekalert.org/pub_releases/2008-06/cmu-cmb061108.php

Having right timing 'connections' in brain is key to overcoming dyslexia

New research has found that key areas for language and working memory involved in reading are connected differently in dyslexics than in children who are good readers and spellers. But, after the children with dyslexia went through a three-week instructional program, their patterns of functional brain connectivity normalized and were similar to those of good readers. The study looked specifically at activity in the left and right inferior front gyrus. The left inferior front gyrus may control the communication between the different areas involved in language, especially spoken language, while the right is thought to be involved in controlling the processing of letters in written words. Prior to the treatment these two areas were overconnected in the dyslexics, and the left inferior frontal gyrus also was overconnected to the middle frontal gyrus, which is involved in working memory that requires temporal coordination. It is not yet known how long the improvement in connectivity is maintained.

[844] Richards, T. L., & Berninger V. W.
(2008).  Abnormal fMRI Connectivity in Children with Dyslexia During a Phoneme Task: Before But Not After Treatment.
Journal of neurolinguistics. 21(4), 294 - 304.

http://www.eurekalert.org/pub_releases/2007-09/uow-hrt090407.php
http://www.sciencedirect.com/science/journal/09116044

New insight into brain and speech promises help for learning disabilities

Following a new understanding of the nature of certain language dysfunctions, researchers have devised a new non-invasive diagnostic tool called BioMAP that can quickly identify children with a subset of learning disabilities that results from a dysfunction in the way the brainstem encodes certain basic sounds of speech. Such children accounted for nearly a third of the language-disordered children the researchers studied. BioMAP measures whether a child's nervous system can accurately translate a sound wave into a brain wave. If it cannot, the affected individual demonstrates problems in discriminating speech sounds that interfere with normal learning. Once identified, children with these problems will be able to improve their speech discrimination skills through auditory training.

[789] Kraus, N., & Nicol T.
(2005).  Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.
Trends in Neurosciences. 28(4), 176 - 181.

http://www.eurekalert.org/pub_releases/2005-04/nu-nii040405.php

Promise for helping adults with dyslexia

Recent studies have demonstrated that children with dyslexia can benefit from programs aimed at “retraining” the brain. Now a new study shows that adults with dyslexia can also benefit from tutoring in processing words, and their brains show changes that indicate neural modifications due to the training.

[454] Eden, G. F., Jones K. M., Cappell K., Gareau L., Wood F. B., Zeffiro T. A., et al.
(2004).  Neural Changes following Remediation in Adult Developmental Dyslexia.
Neuron. 44(3), 411 - 422.

http://www.eurekalert.org/pub_releases/2004-10/cp-pfh102204.php

Immature motion pathways in the brain associated with poor reading skills

An interactive computer game called MovingToRead (MTR) has significantly improved reading skills in poor second-grade readers within three months by practicing left-right movement discrimination for 5 to 10 minutes once or twice a week. It has been suggested that immature motion pathways — the circuit of neurons that helps readers determine the location of letters of a word and words on a page — may be related to reading problems in children. The therapy appears to be most effective with second-graders (age 7).

http://www.eurekalert.org/pub_releases/2003-11/sfn-ssb111103.php

Short-term dyslexia treatment strengthens key brain regions

A group of dyslexic children and a group of good readers of the same age underwent functional magnetic resonance imaging (fMRI) to map their brain activation patterns during two types of reading tests. Both groups of children were found to use the same specific parts of their brains to perform the reading tasks, however, the activation of these regions was much weaker in the dyslexic children. The children with dyslexia then received a three-week training program based on principles outlined by the National Reading Panel (http://www.nationalreadingpanel.org). After this program the levels of brain activation were found to be essentially the same in the two groups.

[261] Aylward, E. H., Richards T. L., Berninger V. W., Nagy W. E., Field K. M., Grimme A. C., et al.
(2003).  Instructional treatment associated with changes in brain activation in children with dyslexia.
Neurology. 61(2), 212 - 219.

http://www.eurekalert.org/pub_releases/2003-07/aaon-sdt071503.php
More background on dyslexia including initial steps toward identifying it in a child, how it may be treated, and additional resources can be found in Neurology's "Patient Page" at http://www.neurology.org.

Error | About memory

Error

The website encountered an unexpected error. Please try again later.