Attention Differences

Attention differences between individuals and ages

Older news items (pre-2010) brought over from the old website

When less attention improves behavior

An intriguing finding from a new study with confabulating patients has found that, unlike with normal individuals, or indeed other patients with damaged prefrontal lobes who don’t confabulate, memory accuracy improves when attention is reduced. It appears that lack of attention during memory retrieval is not the reason for confabulation; instead the problem might lie in over-processing irrelevant information. Training such patients to double-check the accuracy of their memories may not therefore be useful; instead they should be trained not to give too much attention to events.

[595] Ciaramelli, E., Ghetti S., & Borsotti M.
(2009).  Divided attention during retrieval suppresses false recognition in confabulation.
Cortex. 45(2), 141 - 153.

http://www.eurekalert.org/pub_releases/2009-01/e-wla012109.php

Children's under-achievement could be down to poor working memory

A survey of over three thousand children has found that 10% of school children across all age ranges suffer from poor working memory seriously affecting their learning. However, poor working memory is rarely identified by teachers, who often describe children with this problem as inattentive or as having lower levels of intelligence. The researchers have developed a new tool, a combination of a checklist and computer programme called the Working Memory Rating Scale, that enables teachers to identify and assess children's memory capacity in the classroom from as early as four years old. The tool has already been piloted successfully in 35 schools across the UK, and is now widely available. It has been translated into ten foreign languages.
http://www.physorg.com/news123404466.html 
http://www.eurekalert.org/pub_releases/2008-02/du-cuc022608.php

Changes in brain, not age, determine one's ability to focus on task

It’s been established that one of the reasons why older adults may do less well on cognitive tasks is because they have greater difficulty in ignoring distractions, which impairs their concentration. But not all older people are afflicted by this. Some are as focused as young adults. An imaging study has now revealed a difference between the brains of those people who are good at focusing, and those who are poor. Those who have difficulty screening out distractions have less white matter in the frontal lobes. They activated neurons in the left frontal lobe as well as the right. Young people and high-functioning older adults tended to use only the right frontal lobe.

[1117] Colcombe, S. J., Kramer A. F., Erickson K. I., & Scalf P.
(2005).  The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans.
Psychology and Aging. 20(3), 363 - 375.

http://www.eurekalert.org/pub_releases/2005-10/uoia-cib102605.php

Memory loss in older adults due to distractions, not inability to focus

We know that older adults often have short-term memory problems, and this has been linked to problems with attention. An imaging study now provides evidence that these short-term memory problems are associated with an inability to filter out surrounding distractions, rather than problems with focusing attention. It’s been suggested that an inability to ignore distracting information may indeed be at the heart of many of the cognitive problems that accompany aging. It should be noted that this is not an inevitable effect of age — in the study, 6 of the 16 older adults involved had no problems with short-term memory or attention.

[383] Gazzaley, A., Cooney J. W., Rissman J., & D'Esposito M.
(2005).  Top-down suppression deficit underlies working memory impairment in normal aging.
Nat Neurosci. 8(10), 1298 - 1300.

http://www.eurekalert.org/pub_releases/2005-09/uoc--mli090805.php

Insight into the processes of 'positive' and 'negative' learners

An intriguing study of the electrical signals emanating from the brain has revealed two types of learners. A brainwave event called an "event-related potential" (ERP) is important in learning; a particular type of ERP called "error-related negativity" (ERN), is associated with activity in the anterior cingulate cortex. This region is activated during demanding cognitive tasks, and ERNs are typically more negative after participants make incorrect responses compared to correct choices. Unexpectedly, studies of this ERN found a difference between "positive" learners, who perform better at choosing the correct response than avoiding the wrong one, and "negative" learners, who learn better to avoid incorrect responses. The negative learners showed larger ERNs, suggesting that "these individuals are more affected by, and therefore learn more from, their errors.” Positive learners had larger ERNs when faced with high-conflict win/win decisions among two good options than during lose/lose decisions among two bad options, whereas negative learners showed the opposite pattern.

[818] Frank, M. J., Woroch B. S., & Curran T.
(2005).  Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases.
Neuron. 47(4), 495 - 501.

http://www.eurekalert.org/pub_releases/2005-08/cp-iit081205.php

Teen's ability to multi-task develops late in adolescence

A study involving adolescents between 9 and 20 years old has found that the ability to multi-task continues to develop through adolescence. The ability to use recall-guided action to remember single pieces of spatial information (such as looking at the location of a dot on a computer screen, then, after a delay, indicating where the dot had been) developed until ages 11 to 12, while the ability to remember multiple units of information in the correct sequence developed until ages 13 to 15. Tasks in which participants had to search for hidden items in a manner requiring a high level of multi-tasking and strategic thinking continued to develop until ages 16 to 17. "These findings have important implications for parents and teachers who might expect too much in the way of strategic or self-organized thinking, especially from older teenagers."

[547] Luciana, M., Conklin H. M., Hooper C. J., & Yarger R. S.
(2005).  The Development of Nonverbal Working Memory and Executive Control Processes in Adolescents.
Child Development. 76(3), 697 - 712.

http://www.eurekalert.org/pub_releases/2005-05/sfri-tat051205.php

Development of working memory with age

An imaging study of 20 healthy 8- to 30-year-olds has shed new light on the development of working memory. The study found that pre-adolescent children relied most heavily on the prefrontal and parietal regions of the brain during the working memory task; adolescents used those regions plus the anterior cingulate; and in adults, a third area of the brain, the medial temporal lobe, was brought in to support the functions of the other areas. Adults performed best. The results support the view that a person's ability to have voluntary control over behavior improves with age because with development, additional brain processes are used.

The findings were presented at the 2004 Annual Meeting of the Society for Neuroscience.

http://www.eurekalert.org/pub_releases/2004-10/uopm-dow102104.php

Add comment

Filtered HTML

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.