Why our brains produce fewer new neurons in old age

August, 2011

New research explains why fewer new brain cells are created in the hippocampus as we get older.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones). Now we know that neurogenesis in the hippocampus is vital for some operations, and that the production of new neurons declines with age (leading to the idea that the reduction in neurogenesis may be one reason for age-related cognitive decline).

What we didn’t know is why this happens. A new study, using mice genetically engineered so that different classes of brain cells light up in different colors, has now revealed the life cycle of stem cells in the brain.

Adult stem cells differentiate into progenitor cells that ultimately give rise to mature neurons. It had been thought that the stem cell population remained stable, but that these stem cells gradually lose their ability to produce neurons. However, the mouse study reveals that during the mouse's life span, the number of brain stem cells decreased 100-fold. Although the rate of this decrease actually slows with age, and the output per cell (the number of progenitor cells each stem cell produces) increases, nevertheless the pool of stem cells is dramatically reduced over time.

The reason this happens (and why it wasn’t what we expected) is explained in a computational model developed from the data. It seems that stem cells in the brain differ from other stem cells. Adult stem cells in the brain wait patiently for a long time until they are activated. They then undergo a series of rapid divisions that give rise to progeny that differentiate into neurons, before ‘retiring’ to become astrocytes. What this means is that, unlike blood or gut stem cells (that renew themselves many times), brain stem cells are only used once.

This raises a somewhat worrying question: if we encourage neurogenesis (e.g. by exercise or drugs), are we simply using up stem cells prematurely? The researchers suggest the answer depends on how the neurogenesis has been induced. Parkinson's disease and traumatic brain injury, for example, activate stem cells directly, and so may reduce the stem cell population. However, interventions such as exercise stimulate the progenitor cells, not the stem cells themselves.

Reference: 

Related News

Training in a mental imagery technique has been found to help multiple sclerosis patients in two memory domains often affected by the disease: autobiographical memory and episodic future thinking.

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).

A study involving 100 healthy older adults (aged 60-80) has found that those with higher levels of physical activity showed more variable spontaneous brain activity in certain brain regions (including the

A ten-year study involving 2,092 older adults (average age 76) has found that people tended to lose awareness of memory problems two to three years before the onset of dementia.

A large, five-year study challenges the idea that omega-3 fatty acids can slow age-related cognitive decline.

A large, two-year study challenges the evidence that regular exercise helps prevent age-related cognitive decline.

A study involving 97 healthy older adults (65-89) has found that those with the “Alzheimer’s gene” (APOe4) who didn’t engage in much physical activity showed a decrease in hippocampal volume (3%) over 18 months.

An Indian study involving 648 dementia patients, of whom 391 were bilingual, has found that, overall, bilingual patients developed dementia 4.5 years later than the monolingual ones. There was no additional advantage to speaking more than two languages.

A study, involving 371 patients with mild cognitive impairment, has found that those with depressive symptoms had higher levels of amyloid-beta, particularly in the frontal cortex and the anterior and posterior

A study involving 206 spousal and adult children caregivers of dementia sufferers (mostly Alzheimer’s) has found that about 84% of caregivers reported a clinically significant burden. Three factors were significant contributors to the burden:

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news