Why our brains produce fewer new neurons in old age

August, 2011

New research explains why fewer new brain cells are created in the hippocampus as we get older.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones). Now we know that neurogenesis in the hippocampus is vital for some operations, and that the production of new neurons declines with age (leading to the idea that the reduction in neurogenesis may be one reason for age-related cognitive decline).

What we didn’t know is why this happens. A new study, using mice genetically engineered so that different classes of brain cells light up in different colors, has now revealed the life cycle of stem cells in the brain.

Adult stem cells differentiate into progenitor cells that ultimately give rise to mature neurons. It had been thought that the stem cell population remained stable, but that these stem cells gradually lose their ability to produce neurons. However, the mouse study reveals that during the mouse's life span, the number of brain stem cells decreased 100-fold. Although the rate of this decrease actually slows with age, and the output per cell (the number of progenitor cells each stem cell produces) increases, nevertheless the pool of stem cells is dramatically reduced over time.

The reason this happens (and why it wasn’t what we expected) is explained in a computational model developed from the data. It seems that stem cells in the brain differ from other stem cells. Adult stem cells in the brain wait patiently for a long time until they are activated. They then undergo a series of rapid divisions that give rise to progeny that differentiate into neurons, before ‘retiring’ to become astrocytes. What this means is that, unlike blood or gut stem cells (that renew themselves many times), brain stem cells are only used once.

This raises a somewhat worrying question: if we encourage neurogenesis (e.g. by exercise or drugs), are we simply using up stem cells prematurely? The researchers suggest the answer depends on how the neurogenesis has been induced. Parkinson's disease and traumatic brain injury, for example, activate stem cells directly, and so may reduce the stem cell population. However, interventions such as exercise stimulate the progenitor cells, not the stem cells themselves.

Reference: 

Related News

A large longitudinal study, comparing physical activity at teenage, age 30, age 50, and late life against cognition of 9,344 women, has revealed that women who are physically active at any point have a lower risk of cognitive impairment in late-life compared to those who are inactive, but teenage

A study involving 733 participants from the Framingham Heart Study Offspring Cohort (average age 60) provides more evidence that excess abdominal fat places otherwise healthy, middle-aged people at greater risk for dementia later in life.

A 12-year study involving 1,221 married couples ages 65 or older (part of the Cache County (Utah) Memory Study) has revealed that husbands or wives who care for spouses with dementia are six times more likely to develop Alzheimer’s themselves than those whose spouses don't have it.

A comprehensive study reveals how the ‘Alzheimer's gene’ (APOE ε4) affects the nature of the disease. It is not simply that those with the gene variant tend to be more impaired (in terms of both memory loss and brain damage) than those without.

A special supplement in the Journal of Alzheimer's Disease focuses on the effects of caffeine on dementia and age-related cognitive decline. Here are the highlights:

Studies on the roundworm C. elegans have revealed that the molecules required for learning and memory are the same from C.

Although research has so far been confined to mouse studies, researchers are optimistic about the promise of histone deacetylase inhibitors in reversing age-related memory loss — both normal decline, and the far more dramatic loss produced by Alzheimer’s.

An implantable cardioverter defibrillator (ICD) is a small electronic device that monitors and regulates heartbeat, and many have been implanted in patients — an estimated 114,000 in the U.S. in 2006.

A 12-year study following the drinking and smoking habits of 22,524 people aged 39-79 has found that in non-smokers, people who consumed moderate amounts of alcohol were 37% less likely to develop stroke than non-drinkers. This association was not found among smokers.

An imaging study reveals why older adults are better at remembering positive events.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.