New advice on how much cognitive abilities decline with age

October, 2010

A new study suggests that inconsistencies in rate of age-related cognitive decline may be partly due to practice effects, but though decline does occur it is slower than some have estimated.

Reports on cognitive decline with age have, over the years, come out with two general findings: older adults do significantly worse than younger adults; older adults are just as good as younger adults. Part of the problem is that there are two different approaches to studying this, each with their own specific bias. You can keep testing the same group of people as they get older — the problem with this is that they get more and more practiced, which mitigates the effects of age. Or you can test different groups of people, comparing older with younger — but cohort differences (e.g., educational background) may disadvantage the older generations. There is also argument about when it starts. Some studies suggest we start declining in our 20s, others in our 60s.

One of my favorite cognitive aging researchers has now tried to find the true story using data from the Virginia Cognitive Aging Project involving nearly 3800 adults aged 18 to 97 tested on reasoning, spatial visualization, episodic memory, perceptual speed and vocabulary, with 1616 tested at least twice. This gave a nice pool for both cross-sectional and longitudinal comparison (retesting ranged from 1 to 8 years and averaged 2.5 years).

From this data, Salthouse has estimated the size of practice effects and found them to be as large as or larger than the annual cross-sectional differences, although they varied depending on the task and the participant’s age. In general the practice effect was greater for younger adults, possibly because younger people learn better.

Once the practice-related "bonus points" were removed, age trends were flattened, with much less positive changes occurring at younger ages, and slightly less negative changes occurring at older ages. This suggests that change in cognitive ability over an adult lifetime (ignoring the effects of experience) is smaller than we thought.

Reference: 

Related News

Analyses of cerebrospinal fluid from 15 patients with Alzheimer's disease, 20 patients with mild cognitive impairment, and 21 control subjects, plus brain tis

Tau protein stabilizes structures that transport supplies from the center of the cell to the extremities, but sometimes some tau is not bound to these microtubules and instead clumps together into

A study involving genetically engineered fruit flies adds to our understanding of why sleep and bioclock disruptions are common in those with Alzheimer's disease.

A new study shows that a combination of inflammation and hypoxia activates microglia in a way that persistently weakens the connection between

A new function has been found for the

New research helps explain the role of amyloid-beta plaques in the development of Alzheimer's, by finding that the

Creating amyloid-beta requires the convergence of a protein called

A Swedish study of some 4,000 60-year-olds has found that regular “non-exercise” physical activity such as gardening or DIY significantly reduced risk of heart attack or stroke, with those who were most active on a daily basis having a 27% lower risk of a heart attack or stroke and a 30% reduced

A year-long study involving 424 sedentary, mobility-limited seniors aged 70-89, has found that variants in a specific gene (the ACE I/D gene) affect seniors’ ability to benefit from exercise.

Data from the American National Health and Nutrition Examination Survey (NHANES) III, involving 3,659 individuals (men aged 55+; women 65+), has found that the more muscle mass older adults have, the less likely they are to die prematurely.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.