Long-term meditation fights age-related cognitive decline

August, 2011

Another study adds to the weight of evidence that meditating has cognitive benefits. The latest finding points to brain-wide improvements in connectivity.

Following on from research showing that long-term meditation is associated with gray matter increases across the brain, an imaging study involving 27 long-term meditators (average age 52) and 27 controls (matched by age and sex) has revealed pronounced differences in white-matter connectivity between their brains.

The differences reflect white-matter tracts in the meditators’ brains being more numerous, more dense, more myelinated, or more coherent in orientation (unfortunately the technology does not yet allow us to disentangle these) — thus, better able to quickly relay electrical signals.

While the differences were evident among major pathways throughout the brain, the greatest differences were seen within the temporal part of the superior longitudinal fasciculus (bundles of neurons connecting the front and the back of the cerebrum) in the left hemisphere; the corticospinal tract (a collection of axons that travel between the cerebral cortex of the brain and the spinal cord), and the uncinate fasciculus (connecting parts of the limbic system, such as the hippocampus and amygdala, with the frontal cortex) in both hemispheres.

These findings are consistent with the regions in which gray matter increases have been found. For example, the tSLF connects with the caudal area of the temporal lobe, the inferior temporal gyrus, and the superior temporal gyrus; the UNC connects the orbitofrontal cortex with the amygdala and hippocampal gyrus

It’s possible, of course, that those who are drawn to meditation, or who are likely to engage in it long term, have fundamentally different brains from other people. However, it is more likely (and more consistent with research showing the short-term effects of meditation) that the practice of meditation changes the brain.

The precise mechanism whereby meditation might have these effects can only be speculated. However, more broadly, we can say that meditation might induce physical changes in the brain, or it might be protecting against age-related reduction. Most likely of all, perhaps, both processes might be going on, perhaps in different regions or networks.

Regardless of the mechanism, the evidence that meditation has cognitive benefits is steadily accumulating.

The number of years the meditators had practiced ranged from 5 to 46. They reported a number of different meditation styles, including Shamatha, Vipassana and Zazen.

Reference: 

Related News

A study involving 254 people with dementia living at home has found that 99% of people with dementia and 97% of their caregivers had one or more unmet needs, 90% of which were safety-related.

A new U.S. study suggests that Alzheimer's disease and other dementias are markedly under-reported on death certificates and medical records. Death certificates tend to only provide an immediate cause, such as pneumonia, and don’t mention the underlying condition that provoked it.

It’s often argued that telling people that they carry genes increasing their risk of Alzheimer’s will simply upset them to no purpose. A new study challenges that idea.

11 new genetic susceptibility factors for Alzheimer’s identified

Understanding a protein's role in familial Alzheimer's disease

Analysis of data from 237 patients with mild cognitive impairment (mean age 79.9) has found that, compared to those carrying the ‘normal’ ApoE3 gene (the most common variant of the ApoE gene), the ApoE4 carriers showed markedly greater rates of shrinkage in 13 of 15 brain regions thought to be k

Analysis of data from more than 8,000 people, most of them older than 60, has revealed that, among the 5,000 people initially tested cognitively normal, carrying one copy of the “Alzheimer’s gene” (ApoE4) only slightly increased men’s risk of developing

Analysis of 700 subjects from the Alzheimer's Disease Neuroimaging Initiative has revealed a genetic mutation (rs4728029) that’s associated with people who develop Alzheimer’s pathology but don’t show clinical symptoms in their lifetime.

Analysis of brain scans and cognitive scores of 64 older adults from the NIA's Baltimore Longitudinal Study of Aging (average age 76) has found that, between the most cognitively stable and the most declining (over a 12-year period), there was no significant difference in the total amount of amy

A pilot study involving 94 older adults, of whom 18 had Alzheimer’s, 24 had

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news