How we can control individual neurons

November, 2010

Every moment a multitude of stimuli compete for our attention. Just how this competition is resolved, and how we control it, is not known. But a new study adds to our understanding.

Following on from earlier studies that found individual neurons were associated with very specific memories (such as a particular person), new research has shown that we can actually regulate the activity of specific neurons, increasing the firing rate of some while decreasing the rate of others.

The study involved 12 patients implanted with deep electrodes for intractable epilepsy. On the basis of each individual’s interests, four images were selected for each patient. Each of these images was associated with the firing of specific neurons in the mediotemporal lobe. The firing of these neurons was hooked up to a computer, allowing the patients to make their particular images appear by thinking of them. When another image appeared on top of the image as a distraction, creating a composite image, patients were asked to focus on their particular image, brightening the target image while the distractor image faded. The patients were successful 70% of the time in brightening their target image. This was primarily associated with increased firing of the specific neurons associated with that image.

I should emphasize that the use of a composite image meant that the participants had to rely on a mental representation rather than the sensory stimuli, at least initially. Moreover, when the feedback given was fake — that is, the patients’ efforts were no longer linked to the behavior of the image on the screen — success rates fell dramatically, demonstrating that their success was due to a conscious, directed action.

Different patients used different strategies to focus their attention. While some simply thought of the picture, others repeated the name of the image out loud or focused their gaze on a particular aspect of the image.

Resolving the competition of multiple internal and external stimuli is a process which involves a number of different levels and regions, but these findings help us understand at least some of the process that is under our conscious control. It would be interesting to know more about the relative effectiveness of the different strategies people used, but this was not the focus of the study. It would also be very interesting to compare effectiveness at this task across age, but of course this procedure is invasive and can only be used in special cases.

The study offers hope for building better brain-machine interfaces.

Reference: 

Related News

Two independent studies have found that students whose birthdays fell just before their school's age enrollment cutoff date—making them among the youngest in their class—had a substantially higher rate of ADHD diagnoses than students who were born later.

I’ve talked about the importance of labels for memory, so I was interested to see that a recent series of experiments has found that hearing the name of an object improved people’s ability to see it, even when the object was flashed onscreen in conditions and speeds (50 milliseconds) that would

A rat study demonstrates how specialized brain training can reverse many aspects of normal age-related cognitive decline in targeted areas. The month-long study involved daily hour-long sessions of intense auditory training targeted at the primary auditory cortex.

It’s now well established that older brains tend to find it harder to filter out irrelevant information. But now a new study suggests that that isn’t all bad.

A paralyzed patient implanted with a brain-computer interface device has allowed scientists to determine the relationship between brain waves and attention. Recordings found a characteristic pattern of activity as the subject paid close attention to the task.

In another demonstration of the many factors that affect exam success, three experiments involving a total of 131 college students have found that seeing the letter A before an exam makes a student more likely to perform better than if he sees the letter F instead.

Another study showing the cognitive benefits of meditation has revealed benefits to perception and attention.

A new study suggests that our memory for visual scenes may not depend on how much attention we’ve paid to it or what a scene contains, but when the scene is presented.

An intriguing set of experiments showing how you can improve perception by manipulating mindset found significantly improved vision when:

A study of over 3,100 older men (49-71) from across Europe has found that men with higher levels of vitamin D performed consistently better in an attention and speed of processing task. There was no difference on visual memory tasks.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news