Genes help explain why Alzheimer’s drugs have been so unsuccessful

  • A gene present in 75% of the human population may be a key reason why a class of drugs for Alzheimer’s disease seem promising in animal studies but fail in human studies.
  • Cell study finds APOE4 protein is slightly misshapen, causing it to break down into disease-causing fragments. But APOE4 doesn't affect amyloid-beta in mice.

Data from a ten-year study involving 345 Alzheimer's patients has found that cholinesterase inhibitors work better with those who don't have the gene CHRFAM7A. The gene is a fusion between a gene that codes for an Alpha 7 receptor for acetylcholine, and a kinase, a type of enzyme. It is not present in the animals genetically engineered to provide Alzheimer's models, but is present in 75% of humans.

Three of the four available Alzheimer’s drugs work by stimulating all receptors that respond to acetylcholine. More specific drugs for Alpha 7 have been in development for over 10 years but have yet to be successful.

The Alpha 7 receptor is one of the receptors binding amyloid beta.

More research is needed to confirm these preliminary findings.

https://www.eurekalert.org/pub_releases/2019-07/uab-sfc071719.php

https://www.futurity.org/alzheimers-disease-drugs-chrfam7a-2108902/

Scientists fix APOE4 gene in human brain cells

Research using human brain cells has found that the APOE4 protein is slightly misshapen and can’t function properly. It breaks down into disease-causing fragments, resulting in a number of problems, including the accumulation of the protein tau and of amyloid peptides.

The presence of APOE4 does not change the production of amyloid beta in mouse neurons, so this is a crucial species difference which shows why our animal models are of limited value.

Further research confirmed that it was specifically the presence of APOE4, and not the absence of the more common allele, APOE3, that promotes Alzheimer’s.

The human APOE4 neurons were treated with compounds developed to change the structure of the apoE4 protein so it resembles the APOE3 protein. This treatment eliminated the signs of Alzheimer's disease, restored normal function to the cells, and improved cell survival.

https://www.eurekalert.org/pub_releases/2018-04/gi-sfg040818.php

Reference: 

The first study was presented at the annual Alzheimer's Association International Conference (AAIC) in Los Angeles, July 2019.

[4416] Wang, C., Najm R., Xu Q., Jeong D-eun., Walker D., Balestra M. E., et al.
(2018).  Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector.
Nature Medicine. 24(5), 647 - 657.

Related News

A small study involving 50 children and teens living in Mexico City (aged 13.4 ± 4.8 years) has found that those with the 'Alzheimer's gene' APOEε4 (22 of the 50) were more vulnerable to the effects of air pollution on cognition.

Alzheimer's the evolutionary cost of better brains?

A small study involving 52 people aged 32-72 has found that those whose parents both had Alzheimer's disease showed more severe abnormalities in brain volume and metabolism and 5-10% more amyloid plaques in certain brain regions, compared to those with either a father or mother, or neither paren

A study involving 97 healthy older adults (65-89) has found that those with the “Alzheimer’s gene” (APOe4) who didn’t engage in much physical activity showed a decrease in hippocampal volume (3%) over 18 months.

It’s often argued that telling people that they carry genes increasing their risk of Alzheimer’s will simply upset them to no purpose. A new study challenges that idea.

11 new genetic susceptibility factors for Alzheimer’s identified

Understanding a protein's role in familial Alzheimer's disease

A brain imaging study of 162 healthy babies (2-25 months) has found that those who carried the ApoE4 gene (60 of the 162) tended to have increased brain growth in areas in the

A gene linked to Alzheimer's has been linked to brain changes in childhood.

Analysis of data from 237 patients with mild cognitive impairment (mean age 79.9) has found that, compared to those carrying the ‘normal’ ApoE3 gene (the most common variant of the ApoE gene), the ApoE4 carriers showed markedly greater rates of shrinkage in 13 of 15 brain regions thought to be k

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.