Finger tracing helps children doing geometry problems

  • Finger tracing key elements in worked problems seems to help some students better understand and apply mathematical concepts.

I've reported before on studies showing how gesturing can help children with mathematics and problem-solving. A new Australian study involving children aged 9-13 has found that finger-tracing has a similar effect.

Students who used their finger to trace over practice examples while simultaneously reading geometry or arithmetic material were able to complete the problems more quickly and correctly than those who didn't use the same technique.

In the first experiment, involving 52 students aged 11-13, some students were instructed to use their index fingers to trace elements of worked examples in triangle geometry, involving two angle relationships (Vertical angles are equal; Any exterior angle equals the sum of the two interior opposite angles.). Students were given two minutes to study a short instructional text on the relationships and how they can be used to solve particular problems. They were then given two minutes to study two worked examples. The tracing group were given additional instruction in how to use their index finger to trace out highlighted elements. The non-tracing group were told to keep their hands in their lap. Testing consisted of six questions, two of which were the same as the acquisition problems but with different numbers, and four of which were transfer questions, requiring more thoughtful responses.

A ceiling effect meant there was no difference between the two groups on the first two test questions. The tracing group answered significantly more transfer questions, although the difference wasn't great. There was no difference in how difficult the groups rated the test items.

In the second experiment, involving 54 Year 4 students, the instruction and problems concerned the fundamental order of operations. The tracing group were told to trace the operation symbols. The tracing group did significantly better, although again, the difference wasn't great, and again, there was no difference in assessment of problem difficulty.

In another experiment, involving 42 Year 5 students (10-11 years), students were given 5 minutes to study three angle relationships involving parallel lines (vertical angles are equal; corresponding angles are equal; the sum of co- interior angles is 180°). While answers to the 'basic' test questions failed to show significant differences, on the advanced transfer problems, the tracing group solved significantly more test questions than the non-tracing group, solved them more quickly, made fewer errors, and reported lower levels of test difficulty.

In the final experiment, involving 72 Year 5 students, on the advanced test problems, students who traced on the paper outperformed those who traced above the paper, who in turn outperformed those who simply read the material.

The researchers claim the findings support the view that tracing out elements of worked examples helps students construct good mental schemas, making it easier for them to solve new problems, and reducing cognitive demand.

As with gesturing, the benefits of tracing are not dramatic, but I believe the pattern of these results support the view that, when cognitive load is high (something that depends on the individual student as well as the task and its context), tracing key elements of worked examples might be a useful strategy.

Further research looking at individual differences would be helpful. I think greater benefits would be shown for students with low working memory capacity.

http://www.eurekalert.org/pub_releases/2016-01/uos-ftc012816.php

Reference: 

[4046] Hu F-T, Ginns P, Bobis J. Getting the point: Tracing worked examples enhances learning. Learning and Instruction [Internet]. 2015 ;35:85 - 93. Available from: http://www.sciencedirect.com/science/article/pii/S0959475214000929

[4043] Ginns P, Hu F-T, Byrne E, Bobis J. Learning By Tracing Worked Examples. Applied Cognitive Psychology [Internet]. 2015 :n/a - n/a. Available from: http://onlinelibrary.wiley.com/doi/10.1002/acp.3171/abstract

Related News

Analysis of DNA and lifestyle data from a representative group of 2,500 U.S.

Five years ago I reported on a finding that primary school children exposed to loud aircraft noise showed impaired reading comprehension (see below).

Children’s ability to remember past events improves as they get older. This has been thought by many to be due to the slow development of the

A study following over 300 Mexican-American children living in an agricultural community has found that their prenatal exposure to organophosphate pesticides (measured by metabolites in the mother’s urine during pregnancy) was significantly associated with attention problems at age 5.

Last year I reported on a study involving 210 subjects aged 7 to 31 that found that in contrast to the adult brain, most of the tightest connections in a child's brain are between brain regions that are physically close to each other.

Two independent studies have found that students whose birthdays fell just before their school's age enrollment cutoff date—making them among the youngest in their class—had a substantially higher rate of ADHD diagnoses than students who were born later.

A study involving 117 six year old children and 104 eight year old children has found that the ability to preserve information in

Findings that children are less likely than adults to distort memories when negative emotions are evoked has significant implications for the criminal justice system.

A review of the many recent studies into the effects of music training on the nervous system strongly suggests that the neural connections made during musical training also prime the brain for other aspects of human communication, including learning.

‘Working memory’ is thought to consist of three components: one concerned with auditory-verbal processing, one with visual-spatial processing, and a central executive that controls both. It has been hypothesized that the relationships between the components changes as children develop.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news