Exercise reduces Alzheimer's damage in brain

August, 2012

A mouse study provides more support for the value of exercise in preventing Alzheimer’s disease, and shows one of the ways in which it does so.

A study designed to compare the relative benefits of exercise and diet control on Alzheimer’s pathology and cognitive performance has revealed that while both are beneficial, exercise is of greater benefit in reducing Alzheimer’s pathology and cognitive impairment.

The study involved mice genetically engineered with a mutation in the APP gene (a familial risk factor for Alzheimer’s), who were given either a standard diet or a high-fat diet (60% fat, 20% carbohydrate, 20% protein vs 10% fat, 70% carbohydrate, 20% protein) for 20 weeks (from 2-3 to 7-8 months of age). Some of the mice on the high-fat diet spent the second half of that 20 weeks in an environmentally enriched cage (more than twice as large as the standard cage, and supplied with a running wheel and other objects). Others on the high-fat diet were put back on a standard diet in the second 10 weeks. Yet another group were put on a standard diet and given an enriched cage in the second 10 weeks.

Unsurprisingly, those on the high-fat diet gained significantly more weight than those on the standard diet, and exercise reduced that gain — but not as much as diet control (i.e., returning to a standard diet) did. Interestingly, this was not the result of changes in food intake, which either stayed the same or slightly increased.

More importantly, exercise and diet control were roughly equal in reversing glucose intolerance, but exercise was more effective than diet control in ameliorating cognitive impairment. Similarly, while amyloid-beta pathology was significantly reduced in both exercise and diet-control conditions, exercise produced the greater reduction in amyloid-beta deposits and level of amyloid-beta oligomers.

It seems that diet control improves metabolic disorders induced by a high-fat diet — conditions such as obesity, hyperinsulinemia and hypercholesterolemia — which affects the production of amyloid-beta. However exercise is more effective in tackling brain pathology directly implicated in dementia and cognitive decline, because it strengthens the activity of an enzyme that decreases the level of amyloid-beta.

Interestingly, and somewhat surprisingly, the combination of exercise and diet control did not have a significantly better effect than exercise alone.

The finding adds to the growing pile of evidence for the value of exercise in maintaining a healthy brain in later life, and helps explain why. Of course, as I’ve discussed on several occasions, we already know other mechanisms by which exercise improves cognition, such as boosting neurogenesis.

Reference: 

Related News

A study involving over 180,000 older veterans (average age 68.8 at study start), of whom 29% had PTSD, has revealed that those with PTSD had a significantly greater risk of developing dementia.

Following on from previous research with mice that demonstrated that a diet rich in

A study involving over 1100 patients with mild to moderate Alzheimer's disease at 50 French clinics has revealed that receiving a comprehensive care plan involving regular 6-monthly assessments (with standardised guidelines for the management of problems) produced no benefits compared to receivi

A small study suggests that the apathy shown by many Alzheimer's patients may not simply be due to memory or language problems, but to a decreased ability to experience emotions.

Confirming previous research, a study involving 270 Alzheimer’s patients has found that larger head size was associated with better performance on memory and thinking tests, even when there was an equivalent degree of brain damage.

Anticholinergics are widely used for a variety of common medical conditions including insomnia, allergies, or incontinence, and many are sold over the counter.

While brain training programs can certainly improve your ability to do the task you’re practicing, there has been little evidence that this transfers to other tasks.

A review of the many recent studies into the effects of music training on the nervous system strongly suggests that the neural connections made during musical training also prime the brain for other aspects of human communication, including learning.

A rat study demonstrates how specialized brain training can reverse many aspects of normal age-related cognitive decline in targeted areas. The month-long study involved daily hour-long sessions of intense auditory training targeted at the primary auditory cortex.

Another study has come out showing that older adults with low levels of vitamin D are more likely to have cognitive problems. The six-year study followed 858 adults who were age 65 or older at the beginning of the study.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.