Electrical stimulation improves name recall, math skill

November, 2010

Studies involving gentle electrical stimulation to the scalp confirm crucial brain regions and demonstrate improved learning for specific knowledge.

In a study involving 15 young adults, a very small electrical current delivered to the scalp above the right anterior temporal lobe significantly improved their memory for the names of famous people (by 11%). Memory for famous landmarks was not affected. The findings support the idea that the anterior temporal lobes are critically involved in the retrieval of people's names.

A follow-up study is currently investigating whether transcranial direct current stimulation (tDCS) will likewise improve name memory in older adults — indeed, because their level of recall is likely to be lower, it is hoped that the procedure will have a greater effect. If so, the next question is whether repeating tDCS may lead to longer lasting improvement. The procedure may offer hope for rehabilitation for stroke or other neurological damage.

This idea receives support from another recent study, in which 15 students spent six days learning a series of unfamiliar symbols that corresponded to the numbers zero to nine, and also had daily sessions of (tDCS). Five students were given 20 minutes of stimulation above the right parietal lobe; five had 20 minutes of stimulation above the left parietal lobe, and five experienced only 30 seconds of stimulation — too short to induce any permanent changes.

The students were tested on the new number system at the end of each day. After four days, those who had experienced current to the right parietal lobe performed as well as they would be expected to do with normal numbers. However, those who had experienced the stimulation to the left parietal lobe performed significantly worse. The control students performed at a level between the two other groups.

Most excitingly, when the students were tested six months later, they performed at the same level, indicating the stimulation had a durable effect. However, it should be noted that the effects were small and highly variable, and were limited to the new number system. While it may be that one day this sort of approach will be of benefit to those with dyscalculia, more research is needed.

Reference: 

Related News

Research into the effects of cannabis on cognition has produced inconsistent results. Much may depend on extent of usage, timing, and perhaps (this is speculation) genetic differences.

In the study, two rhesus monkeys were given a standard human test of

In the experiment, rats learned which lever to press to receive water, where the correct lever depended on which lever they had pressed previously (the levers were retractable; there was a variable delay between the first and second presentation of the levers).

I’ve always felt that better thinking was associated with my brain working ‘in a higher gear’ — literally working at a faster rhythm.

Trying to learn two different things one after another is challenging. Almost always some of the information from the first topic or task gets lost. Why does this happen?

I’ve spoken often about the spacing effect — that it’s better to spread out your learning than have it all massed in a block.

What governs whether or not you’ll retrieve a memory? I’ve talked about the importance of retrieval cues, of the match between the cue and the memory code you’re trying to retrieve, of the strength of the connections leading to the code. But these all have to do with the memory code.

In a recent study, 40 undergraduate students learned ten lists of ten pairs of Swahili-English words, with tests after each set of ten. On these tests, each correct answer was followed by an image, either a neutral one or one designed to arouse negative emotions, or by a blank screen.

Childhood amnesia — our inability to remember almost everything that happened to us when very young — is always interesting. It’s not as simple as an inability to form long-term memories.

As we get older, when we suffer memory problems, we often laughingly talk about our brain being ‘full up’, with no room for more information. A new study suggests that in some sense (but not the direct one!) that’s true.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news