Different kinds of physical activity improve brain volume & cut Alzheimer's risk

  • A large long-running study adds to growing evidence that higher levels of physical activity reduce brain atrophy and Alzheimer's risk, and shows that many types of aerobic activity are beneficial.

Data from 876 patients (average age 78) in the 30-year Cardiovascular Health Study show that virtually any type of aerobic physical activity can improve brain volume and reduce Alzheimer's risk.

A higher level of physical activity was associated with larger brain volumes in the frontal, temporal, and parietal lobes including the hippocampus, thalamus and basal ganglia. Among those with MCI or Alzheimer's (25% of the participants), higher levels of physical activity were also associated with less brain atrophy. An increase in physical activity was also associated with larger grey matter volumes in the left inferior orbitofrontal cortex and the left precuneus.

Further analysis of 326 of the participants found that those with the highest energy expenditure were half as likely to have developed Alzheimer's disease five years later.

Physical activity was assessed using the Minnesota Leisure-Time Activities questionnaire, which calculates kilocalories/week using frequency and duration of time spent in 15 different leisure-time activities: swimming, hiking, aerobics, jogging, tennis, racquetball, walking, gardening, mowing, raking, golfing, bicycling, dancing, calisthenics, and riding an exercise cycle.

The study does not look at whether some types of physical activity are better than others, unfortunately, but its message that overall physical activity, regardless of type, helps in the fight against cognitive impairment is encouraging.

http://www.eurekalert.org/pub_releases/2016-03/ip-dko030916.php

http://www.eurekalert.org/pub_releases/2016-03/uops-bmc031016.php

Reference: 

Related News

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Analyses of cerebrospinal fluid from 15 patients with Alzheimer's disease, 20 patients with mild cognitive impairment, and 21 control subjects, plus brain tissue from

Tau protein stabilizes structures that transport supplies from the center of the cell to the extremities, but sometimes some tau is not bound to these microtubules and instead clumps together into

A study involving genetically engineered fruit flies adds to our understanding of why sleep and bioclock disruptions are common in those with Alzheimer's disease.

A new study shows that a combination of inflammation and hypoxia activates microglia in a way that persistently weakens the connection between neurons,

A new function has been found for the

New research helps explain the role of amyloid-beta plaques in the development of Alzheimer's, by finding that the

Creating amyloid-beta requires the convergence of a protein called

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news