Caffeine may block inflammation linked to cognitive impairment

November, 2012

A mouse study indicates that caffeine can help prevent inflammation occurring in the brain, by blocking an early response to cell damage.

Caffeine has been associated with a lower of developing Alzheimer's disease in some recent studies. A recent human study suggested that the reason lies in its effect on proteins involved in inflammation. A new mouse study provides more support for this idea.

In the study, two groups of mice, one of which had been given caffeine, were exposed to hypoxia, simulating what happens in the brain during an interruption of breathing or blood flow. When re-oxygenated, caffeine-treated mice recovered their ability to form a new memory 33% faster than the other mice, and the caffeine was observed to have the same anti-inflammatory effect as blocking interleukin-1 (IL-1) signaling.

Inflammation is a key player in cognitive impairment, and IL-1 has been shown to play a critical role in the inflammation associated with many neurodegenerative diseases.

It was found that the hypoxic episode triggered the release of adenosine, the main component of ATP (your neurons’ fuel). Adenosine is released when a cell is damaged, and this leakage into the environment outside the cell begins a cascade that leads to inflammation (the adenosine activates an enzyme, caspase-1, which triggers production of the cytokine IL-1β).

But caffeine blocks adenosine receptors, stopping the cascade before it starts.

The finding gives support to the idea that caffeine may help prevent cognitive decline and impairment.


Related News

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

A study involving 266 people with mild cognitive impairment (aged 70+) has found that B vitamins are more effective in slowing cognitive decline when people have higher omega 3 levels.

Growing research has implicated infections as a factor in age-related cognitive decline, but these have been cross-sectional (comparing different individuals, who will have a number of other, possibly confounding, attributes).

Another study adds to the growing evidence that a Mediterranean diet is good for the aging brain.

A two-year study which involved metabolic testing of 50 people, suggests that Alzheimer's disease consists of three distinct subtypes, each one of which may need to be treated differently. The finding may help explain why it has been so hard to find effective treatments for the disease.

A study involving both mice and human cells adds to evidence that stress is a risk factor for Alzheimer's.

Data from 23,572 Americans from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study has revealed that those who survived a stroke went on to have significantly faster rates of cognitive decline as they aged.

A study involving 382 older adults (average age 75) followed for around five years, has found that those who don’t get enough vitamin D may experience cognitive decline at a much faster rate than people who have adequate vitamin D.

Training in a mental imagery technique has been found to help multiple sclerosis patients in two memory domains often affected by the disease: autobiographical memory and episodic future thinking.

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).


Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news