Brain hub helps us switch attention

December, 2010

The intraparietal sulcus appears to be a hub for connecting the different sensory-processing areas as well as higher-order processes, and may be key to attention problems.

If our brains are full of clusters of neurons resolutely only responding to specific features (as suggested in my earlier report), how do we bring it all together, and how do we switch from one point of interest to another? A new study using resting state data from 58 healthy adolescents and young adults has found that the intraparietal sulcus, situated at the intersection of visual, somatosensory, and auditory association cortices and known to be a key area for processing attention, contains a miniature map of all the things we can pay attention to (visual, auditory, motor stimuli etc).

Moreover, this map is copied in at least 13 other places in the brain, all of which are connected to the intraparietal sulcus. Each copy appears to do something different with the information. For instance, one map processes eye movements while another processes analytical information. This map of the world may be a fundamental building block for how information is represented in the brain.

There were also distinct clusters within the intraparietal sulcus that showed different levels of connectivity to auditory, visual, somatosensory, and default mode networks, suggesting they are specialized for different sensory modalities.

The findings add to our understanding of how we can shift our attention so precisely, and may eventually help us devise ways of treating disorders where attention processing is off, such as autism, attention deficit disorder, and schizophrenia.

Reference: 

[1976] Anderson, J. S., Ferguson M. A., Lopez-Larson M., & Yurgelun-Todd D.
(2010).  Topographic maps of multisensory attention.
Proceedings of the National Academy of Sciences. 107(46), 20110 - 20114.

Related News

The idea that bilingual children have superior executive function compared to monolingual children has been challenged in recent research.

A Spanish study investigating the effects of traffic-related air pollution on children walking to school has found higher levels of particulate matter and black carbon were associated with decreased growth in

A Canadian study involving French-speaking university students has found that repeating aloud, especially to another person, improves memory for words.

We know that the

Four studies involving a total of more than 300 younger adults (20-24) have looked at information processing on different forms of media.

A sleep study involving 28 participants had them follow a controlled sleep/wake schedule for three weeks before staying in a sleep laboratory for 4.5 days, during which time they experienced a cycle of sleep deprivation and recovery in the absence of seasonal cues such as natural light, time inf

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).

I've written at length about implementation plans in my book “Planning to Remember: How to Remember What You're Doing and What You Plan to Do”.

In 2013 I reported briefly on a pilot study showing that “super-agers” — those over 80 years old who have the brains and cognitive powers more typical of people decades younger — had an unusually large

A recent study reveals that when we focus on searching for something, regions across the brain are pulled into the search. The study sheds light on how attention works.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news