Alzheimer's protein may impair mental function even in healthy adults

March, 2012

The protein associated with Alzheimer's disease appears to impair cognitive function many years before symptoms manifest. Higher levels of this protein are more likely in carriers of the Alzheimer’s gene, and such carriers may be more affected by the protein’s presence.

Another study adds to the evidence that changes in the brain that may lead eventually to Alzheimer’s begin many years before Alzheimer’s is diagnosed. The findings also add to the evidence that what we regard as “normal” age-related cognitive decline is really one end of a continuum of which the other end is dementia.

In the study, brain scans were taken of 137 highly educated people aged 30-89 (participants in the Dallas Lifespan Brain Study). The amount of amyloid-beta (characteristic of Alzheimer’s) was found to increase with age, and around a fifth of those over 60 had significantly elevated levels of the protein. These higher amounts were linked with worse performance on tests of working memory, reasoning and processing speed.

More specifically, across the whole sample, amyloid-beta levels affected processing speed and fluid intelligence (in a dose-dependent relationship — that is, as levels increased, these functions became more impaired), but not working memory, episodic memory, or crystallized intelligence. Among the elevated-levels group, increased amyloid-beta was significantly associated with poorer performance for processing speed, working memory, and fluid intelligence, but not episodic memory or crystallized intelligence. Among the group without elevated levels of the protein, increasing amyloid-beta only affected fluid intelligence.

These task differences aren’t surprising: processing speed, working memory, and fluid intelligence are the domains that show the most decline in normal aging.

Those with the Alzheimer’s gene APOE4 were significantly more likely to have elevated levels of amyloid-beta. While 38% of the group with high levels of the protein had the risky gene variant, only 15% of those who didn’t have high levels carried the gene.

Note that, while the prevalence of carriers of the gene variant matched population estimates (24%), the proportion was higher among those in the younger age group — 33% of those under 60, compared to 19.5% of those aged 60 or older. It seems likely that many older carriers have already developed MCI or Alzheimer’s, and thus been ineligible for the study.

The average age of the participants was 64, and the average years of education 16.4.

Amyloid deposits varied as a function of age and region: the precuneus, temporal cortex, anterior cingulate and posterior cingulate showed the greatest increase with age, while the dorsolateral prefrontal cortex, orbitofrontal cortex, parietal and occipital cortices showed smaller increases with age. However, when only those aged 60+ were analyzed, the effect of age was no longer significant. This is consistent with previous research, and adds to evidence that age-related cognitive impairment, including Alzheimer’s, has its roots in damage occurring earlier in life.

In another study, brain scans of 408 participants in the Mayo Clinic Study of Aging also found that higher levels of amyloid-beta were associated with poorer cognitive performance — but that this interacted with APOE status. Specifically, carriers of the Alzheimer’s gene variant were significantly more affected by having higher levels of the protein.

This may explain the inconsistent findings of previous research concerning whether or not amyloid-beta has significant effects on cognition in normal adults.

As the researchers of the first study point out, what’s needed is information on the long-term course of these brain changes, and they are planning to follow these participants.

In the meantime, all in all, the findings do provide more strength to the argument that your lifestyle in mid-life (and perhaps even younger) may have long-term consequences for your brain in old age — particularly for those with a genetic susceptibility to Alzheimer’s.

Recent posts at Mynd

A study involving 97 healthy older adults (65-89) has found that those with the “Alzheimer’s gene” (APOe4) who didn’t...

An Indian study involving 648 dementia patients, of whom 391 were bilingual, has found that, overall, bilingual patients developed dementia 4.5...

A study, involving 371 patients with mild cognitive impairment...

A study involving 206 spousal and adult children caregivers of dementia sufferers (mostly Alzheimer’s) has found that about 84% of...

A study involving 254 people with dementia living at home has found that 99% of people with dementia and 97% of their caregivers had one or more...

A new U.S. study suggests that Alzheimer's disease and other dementias are markedly under-reported on death certificates and medical records....

It’s often argued that telling people that they carry genes increasing their risk of Alzheimer’s will simply upset them to no purpose...

11 new genetic susceptibility factors for Alzheimer’s identified

The largest international study ever conducted on Alzheimer's...

Understanding a protein's role in familial Alzheimer's...

A brain imaging study of 162 healthy babies (2-25 months) has found that those who carried the ApoE4...

A gene linked to Alzheimer's has been linked to brain changes in childhood. This gene, SORL1, has two connections to Alzheimer’s: it...

Analysis of data from 237 patients with mild cognitive impairment...

Two studies indicate that young people carrying the “Alzheimer’s gene” (ApoE4...

Analysis of data from more than 8,000 people, most of them older than 60, has revealed that, among the 5,000 people initially tested cognitively...

Analysis of 700 subjects from the Alzheimer's Disease Neuroimaging Initiative has revealed a genetic mutation (rs4728029) that’s associated...

Analysis of brain scans and cognitive scores of 64 older adults from the NIA's Baltimore Longitudinal Study of Aging (average age 76) has found...