Latest Research News

A review described as “definitive” has concluded that there is ample biological evidence to suggest an important role for vitamin D in brain development and function, and that supplementation for groups chronically low in vitamin D is warranted. Vitamin D has long been known to promote healthy bones, but more recently has been found to have a much broader role — over 900 different genes are now known to be able to bind the vitamin D receptor.

A chemical called methionine (an amino acid found in beta-amyloid) may be the source of the toxic free radicals produced by the amyloid-beta peptide. Recent studies have demonstrated that higher than normal doses of vitamin E may slow the advance of Alzheimer's in some people with late stages of the disease. The current study provides a possible explanation for this link. Vitamin E, an antioxidant, appears to work by destroying free radicals (oxidants) produced by amyloid.

Two studies have come out in favor of a diet rich in foods containing vitamin E to help protect against Alzheimer's disease. One study involved 815 Chicago residents age 65 and older with no initial symptoms of mental decline, who were questioned about their eating habits and followed for an average of about four years. When factors like age and education were taken into account, those eating the most vitamin E-rich foods had a lower risk of developing Alzheimer’s, provided they did not have the ApoE e4 allele. This was not true when vitamin E was taken as a supplement.

A theory that changes in fat metabolism in the membranes of nerve cells play a role in Alzheimer's has been supported in a recent study. The study found significantly higher levels of ceramide and cholesterol in the middle frontal gyrus of Alzheimer's patients. The researchers suggest that alterations in fats (especially cholesterol and ceramide) may contribute to a "neurodegenerative cascade" that destroys neurons in Alzheimer's, and that the accumulation of ceramide and cholesterol is triggered by the oxidative stress brought on by the presence of the toxic beta amyloid peptide.

A study involving 4,740 elderly (65 years or older) found the greatest reduction in both prevalence and incidence of Alzheimer's in those who used individual vitamin E and C supplements in combination, with or without an additional multivitamin. There was no significant benefit in using vitamin C alone, vitamin E alone, or vitamin C and multivitamins in combination.

A guinea pig study has found that newborn guinea pigs subjected to moderate vitamin C deficiency had 30% fewer hippocampal neurons and markedly worse spatial memory than guinea pigs given a normal diet. For several reasons the neonatal brain is thought to be particularly vulnerable to even a slight lowering of the vitamin C level. Vitamin C deficiency is very common in some parts of the world, and even in wealthy nations occurs in an estimated 5-10% of the adult population.

The nutrient choline is known to play a critical role in memory and brain function by positively affecting the brain's physical development through increased production of stem cells (the parents of brain cells). New research demonstrates that this occurs through the effect of choline on the expression of particular genes. The important finding is that diet during pregnancy turns on or turns off division of stem cells that form the memory areas of the brain. Developing babies get choline from their mothers during pregnancy and from breast milk after they are born.

A "cocktail" of dietary supplements (omega-3 fatty acids, uridine and choline) has been found to dramatically increase the amount of membranes that form brain cell synapses in gerbils. The treatment is now in human clinical trials. It is hoped that such treatment may significantly delay Alzheimer's disease. The treatment offers a different approach from the traditional tactic of targeting amyloid plaques and tangles. Choline can be found in meats, nuts and eggs, and omega-3 fatty acids are found in a variety of sources, including fish, eggs, flaxseed and meat from grass-fed animals.

A study has found that gerbils given a ‘cocktail’ of DHA, uridine and choline performed significantly better on learning and memory tests than untreated gerbils, and their brains had up to 70% more phosphatides (a type of molecule that forms cell membranes) than controls, suggesting that new synapses are forming. Some of the gerbils received all three compounds and some received only two; the improvements were greatest in those given all three. An earlier study had found that the treatment improved function in rats with cognitive impairment.

A mouse study has found that the diet of a pregnant mother, especially in regards to choline, can change the epigenetic switches that control brain development in the fetus. Pregnant mice received different diets during the period when a fetus develops its

A rat study has found that increased levels of magnesium in the brain improved many aspects of learning and memory in both young and old rats. Because it is difficult to boost brain magnesium levels with traditional oral supplements, the researchers developed a new magnesium compound, magnesium-L-threonate (MgT).

In this study, subjects were shown two sets of 12 color photographs of people’s faces (24 in total). Five minutes after seeing the last one, the subjects were then shown another 48 faces (one by one, as before) and had to say whether or not they had seen the face earlier. If so, they were asked whether they saw it in the first or second set of photographs. Half the subjects had been deprived of sleep for the previous 35 hours. Some of these had been given significant amounts of caffeine to offset their sleepiness.

Harrison, Yvonne & Horne, James A. 2000. Sleep loss and temporal memory. The Quarterly Journal of Experimental Psychology, 53A (1), 271-279.

A study of 20 flight attendants suggests that people who undergo repeated, frequent episodes of jet lag without sufficient recovery time between trips may develop actual tissue changes in the brain in an area that's involved in spatial orientation and related aspects of cognitive function. The extent to which this is due to sleep deprivation rather than time shifts per se is unknown. These findings may also be relevant to shift workers, medical trainees and others who work long hours.

A study involving adult male white-footed mice may help us understand seasonal dysfunctions such as seasonal affective disorder. The study found that those mice kept in artificial light conditions mimicking winter (8 hours of light per day) had impaired spatial memory compared to mice kept in “summer” conditions (16 hours per day). They also had, on average, smaller brains, with a proportionally smaller hippocampus, as well as changes in dendritic spine density in that region. Other types of memory did not appear to be affected.

A survey of 824 undergraduate students has found that those who were evening types had lower average grades than those who were morning types.

We know circadian rhythm affects learning and memory in that we find it easier to learn at certain times of day than others, but now a study involving Siberian hamsters has revealed that having a functioning circadian system is in itself critical to being able to remember. The finding has implications for disorders such as Down syndrome and Alzheimer's disease. The critical factor appears to be the amount of the neurotransmitter GABA, which acts to inhibit brain activity.

Pages

Subscribe to Latest news Subscribe to Latest news Subscribe to Latest health news