Latest Research News

As I’ve discussed on many occasions, a critical part of attention (and

The mental differences between a novice and an expert are only beginning to be understood, but two factors thought to be of importance are automaticity (the process by which a procedure becomes so practiced that it no longer requires conscious thought) and chunking (the unitizing of related bits of information into one tightly integrated unit — see my recent blog post on

It’s well-established that feelings of encoding fluency are positively correlated with judgments of learning, so it’s been generally believed that people primarily use the simple rule, easily learned = easily remembered (ELER), to work out whether they’re likely to remember something (as discussed in the previous news report). However, new findings indicate that the situation is a little more complicated.

Research has shown that people are generally poor at predicting how likely they are to remember something. A recent study tested the theory that the reason we’re so often inaccurate is that we make predictions about memory based on how we feel while we're encountering the information to be learned, and that can lead us astray.

Following earlier research suggesting mood affects attention, a new study tries to pin down exactly what it’s affecting.

In the first of three experiments, 132 students were found to gesture more often when they had difficulties solving mental rotation problems. In the second experiment, 22 students were encouraged to gesture, while 22 were given no such encouragement, and a further 22 were told to sit on their hands to prevent gesturing. Those encouraged to gesture solved more mental rotation problems.

We’ve all experienced the fading of our ability to concentrate when we’ve been focused on a task for too long. The dominant theory of why this should be so has been around for half a century, and describes attention as a limited resource that gets ‘used up’. Well, attention is assuredly a limited resource in the sense that you only have so much of it to apply. But is it limited in the sense of being used up and needing to refresh? A new study indicates that it isn’t.

A study involving 171 sedentary, overweight 7- to 11-year-old children has found that those who participated in an exercise program improved both executive function and math achievement. The children were randomly selected either to a group that got 20 minutes of aerobic exercise in an after-school program, one that got 40 minutes of exercise in a similar program, or a group that had no exercise program. Those who got the greater amount of exercise improved more.

I’ve talked about the importance of retrieval practice at length, so I’m pleased to report on the latest study to confirm its value. Indeed, this study demonstrates that practicing retrieval is a more effective strategy than elaborative studying.

Brain images of 16 participants in an 8-week mindfulness meditation program, taken two weeks before and after the program, have found measurable changes in brain regions associated with memory, sense of self, empathy and stress. Specifically, they showed increased grey-matter density in the left

In a recent study, volunteers were asked to solve a problem known as the Tower of Hanoi, a game in which you have to move stacked disks from one peg to another. Later, they were asked to explain how they did it (very difficult to do without using your hands.) The volunteers then played the game again. But for some of them, the weight of the disks had secretly reversed, so that the smallest disk was now the heaviest and needed two hands.

A link between positive mood and creativity is supported by a study in which 87 students were put into different moods (using music and video clips) and then given a category learning task to do (classifying sets of pictures with visually complex patterns). There were two category tasks: one involved classification on the basis of a rule that could be verbalized; the other was based on a multi-dimensional pattern that could not easily be verbalized.

A

We know active learning is better than passive learning, but for the first time a study gives us some idea of how that works. Participants in the imaging study were asked to memorize an array of objects and their exact locations in a grid on a computer screen. Only one object was visible at a time. Those in the "active study” group used a computer mouse to guide the window revealing the objects, while those in the “passive study” group watched a replay of the window movements recorded in a previous trial by an active subject.

It’s well known that being too anxious about an exam can make you perform worse, and studies indicate that part of the reason for this is that your limited

There are a number of ways experts think differently from novices (in their area of expertise). A new study involving 72 college-age typists with about 12 years of typing experience and typing speeds comparable to professional typists indicates that our idea that highly skilled activities operate at an unconscious level is a little more complex than we thought.

In a study in which 14 volunteers were trained to recognize a faint pattern of bars on a computer screen that continuously decreased in faintness, the volunteers became able to recognize fainter and fainter patterns over some 24 days of training, and this correlated with stronger EEG signals from their brains as soon as the pattern flashed on the screen. The findings indicate that learning modified the very earliest stage of visual processing.

In a study involving 15 young adults, a very small electrical current delivered to the scalp above the right anterior

Following on from earlier research suggesting that simply talking helps keep your mind sharp at all ages, a new study involving 192 undergraduates indicates that the type of talking makes a difference.

In an experiment to investigate why testing might improve learning, 118 students were given 48 English-Swahili translation pairs. An initial study trialwas followed by three blocks of practice trials. For one group, the practice trial involved a cued recall test followed by restudy. For the other group, they weren’t tested, but were simply presented with the information again (restudy-only). On both study and restudy trials, participants created keywords to help them remember the association.

A couple of years ago I reported on a finding that walking in the park, and (most surprisingly) simply looking at photos of natural scenes, could improve memory and concentration (see below). Now a new study helps explain why. The study examined brain activity while 12 male participants (average age 22) looked at images of tranquil beach scenes and non-tranquil motorway scenes.

Following a monkey study that found training in spatial memory could raise females to the level of males, and human studies suggesting the video games might help reduce gender differences in spatial processing (see below for these), a new study shows that training in spatial skills can eliminate the gender difference in young children. Spatial ability, along with verbal skills, is one of the two most-cited cognitive differences between the sexes, for the reason that these two appear to be the most robust.

An intriguing new study has found that people are more likely to remember specific information if the pattern of activity in their brain is similar each time they study that information. The findings are said to challenge the long-held belief that people retain information more effectively when they study it several times under different contexts, thus giving their brains multiple cues to remember it. However, although I believe this finding adds to our understanding of how to study effectively, I don’t think it challenges the multiple-context evidence.

Why are other people’s phone conversations so annoying? A new study suggests that hearing only half a conversation is more distracting than other kinds of conversations because we're missing the other side of the story and so can't predict the flow of the conversation. This finding suggests that driving a car might be impaired not only by the driver talking on the phone, but also by passengers talking on their phones.

There’s been a lot of discussion, backed by some evidence, that groups are ‘smarter’ than the individuals in them, that groups make better decisions than individuals. But it is not, of course, as simple as that, and a recent study speaks to the limits of this principle. The study involved pairs of volunteers who were asked to detect a very weak signal that was shown on a computer screen. If they disagreed about when the signal occurred, then they talked together until they agreed on a joint decision.

No big surprise, surely: a new study has found that computers do not magically improve students’ study skills — they tend to study online material using the same techniques they would use with traditional texts. Which means, it appears, poor strategies.

On the subject of the benefits of walking for seniors, it’s intriguing to note a recent pilot study that found frail seniors who walked slowly (no faster than one meter per second) benefited from a brain fitness program known as Mindfit. After eight weeks of sessions three times weekly (each session 45-60 minutes), all ten participants walked a little faster, and significantly faster while talking. Walking while talking requires considerably more concentration than normal walking.

A new study explains why variable practice improves your memory of most skills better than practice focused on a single task. The study compared skill learning between those asked to practice one particular challenging arm movement, and those who practiced the movement with other related tasks in a variable practice structure.

I’ve talked about the importance of labels for memory, so I was interested to see that a recent series of experiments has found that hearing the name of an object improved people’s ability to see it, even when the object was flashed onscreen in conditions and speeds (50 milliseconds) that would render it invisible. The effect was specific to language; a visual preview didn’t help.

While brain training programs can certainly improve your ability to do the task you’re practicing, there has been little evidence that this transfers to other tasks. In particular, the holy grail has been very broad transfer, through improvement in

Context is important for memory. Therefore it’s not surprising that shifting your mind’s focus to another context can impair recall — or help you forget. Following on from research finding that thinking about something else blocks access to memories of the recent past, a new study has found that daydreaming about a more distant place impairs memory more compared to daydreaming about a closer place.

A number of studies have demonstrated that negative stereotypes (such as “women are bad at math”) can impair performance in tests. Now a new study shows that this effect extends to learning. The study involved learning to recognize target Chinese characters among sets of two or four. Women who were reminded of the negative stereotypes involving women's math and visual processing ability failed to improve at this search task, while women who were not reminded of the stereotype got faster with practice.

While studies have demonstrated that listening to music before doing a task can improve performance on that task, chiefly through its effect on mood, there has been little research into the effects of background music while doing the task. A new study had participants recall a list of 8 consonants in a specific order in the presence of five sound environments: quiet, liked music, disliked music, changing-state (a sequence of random digits such as "4, 7, 1, 6") and steady-state ("3, 3, 3").

A review of the many recent studies into the effects of music training on the nervous system strongly suggests that the neural connections made during musical training also prime the brain for other aspects of human communication, including learning. It’s suggested that actively engaging with musical sounds not only helps the plasticity of the brain, but also helps provide a stable scaffolding of meaningful patterns. Playing an instrument primes the brain to choose what is relevant in a complex situation.

A rat study demonstrates how specialized brain training can reverse many aspects of normal age-related cognitive decline in targeted areas. The month-long study involved daily hour-long sessions of intense auditory training targeted at the primary auditory cortex. The rats were rewarded for picking out the oddball note in a rapid sequence of six notes (five of them of the same pitch). The difference between the oddball note and the others became progressively smaller. After the training, aged rats showed substantial reversal of their previously degraded ability to process sound.

It is now well established that memories are consolidated during sleep. Now a new study has found that restful periods while you are awake are also times when consolidation can occur.

A study (“Midlife in the United States”) assessing 3,343 men and women aged 32-84 (mean age 56), of whom almost 40% had at least a 4-year college degree, has found evidence that frequent cognitive activity can counteract the detrimental effect of poor education on age-related cognitive decline.

A study involving 155 women aged 65-75 has found that those who participated in resistance training once or twice weekly for a year significantly improved their selective attention (maintaining mental focus) and conflict resolution (as well as muscular function of course!), compared to those who participated in twice-weekly balance and tone training.

While most foreign language courses try hard to provide native speakers, a new study shows that adults find it easier when the teacher speaks it in the same accent as the student.

Mindfulness Training had a positive effect on both

Pages