Latest Research News

We've all done it: used the wrong name when we know the right one perfectly well. And we all know when it's most likely to happen. But here's a study come to reassure us that it's okay, this is just how we roll.

The study, based on five separate surveys of more than 1,700 respondents, finds that these naming errors (when you call someone you know very well by the wrong name) follow a particular pattern that tells us something about how our memory is organized.

A study involving 66 healthy young adults (average age 24) has revealed that different individuals have distinct brain connectivity patterns that are associated with different ways of experiencing and remembering the past.

The question of the brain's capacity usually brings up remarks that the human brain contains about 100 billion neurons. If each one has, say, 1,000 or more connections to other neurons, this produces some 100 trillion connections in which our memory can be held. These connections are between synapses, which change in strength and size when activated. These changes are a critical part of the memory code. In fact, synaptic strength is analogous to the 1s and 0s that computers use to encode information.

Because this is such a persistent myth, I thought I should briefly report on this massive study that should hopefully put an end to this myth once and for all (I wish! Myths are not so easily squashed.)

This study used data from 377,000 U.S. high school students, and, agreeing with a previous large study, found that first-borns have a one IQ point advantage over later-born siblings, but while statistically significant, this is a difference of no practical significance.

The number of items a person can hold in short-term memory is strongly correlated with their IQ. But short-term memory has been recently found to vary along another dimension as well: some people remember (‘see’) the items in short-term memory more clearly and precisely than other people. This discovery has lead to the hypothesis that both of these factors should be considered when measuring

Our life-experiences contain a wealth of new and old information. The relative proportions of these change, of course, as we age. But how do we know whether we should be encoding new information or retrieving old information? It’s easy if the information is readily accessible, but what if it’s not? Bear in mind that (especially as we get older) most information / experiences we meet share some similarity to information we already have.

We know that emotion affects memory. We know that attention affects perception (see, e.g., Visual perception heightened by meditation training; How mindset can improve vision). Now a new study ties it all together. The study shows that emotionally arousing experiences affect how well we see them, and this in turn affects how vividly we later recall them.

Here’s an intriguing study for those interested in how language affects how we think. It’s also of interest to those who speak more than one language or are interested in learning another language, because it deals with the long-debated question as to whether bilinguals working in their non-native language automatically access the native-language representations in long-term memory, or whether they can ‘switch off’ their native language and use only the target language memory codes.

We’re all familiar with the experience of going to another room and forgetting why we’ve done so. The problem has been largely attributed to a failure of attention, but recent research suggests something rather more specific is going on.

Certainly experiences that arouse emotions are remembered better than ones that have no emotional connection, but whether negative or positive memories are remembered best is a question that has produced equivocal results. While initial experiments suggested positive events were remembered better than negative, more recent studies have concluded the opposite.

Previous research has found that carriers of the so-called

Here’s an intriguing approach to the long-standing debate about gender differences in spatial thinking. The study involved 1,279 adults from two cultural groups in India. One of these groups was patrilineal, the other matrilineal. The volunteers were given a wooden puzzle to assemble as quickly as they could.

Within the patrilineal group, men were on average 36% faster than women. Within the matrilineal group, however, there was no difference between the genders.

A new perspective on learning comes from a study in which 18 volunteers had to push a series of buttons as fast as possible, developing their skill over three sessions. New analytical techniques were then used to see which regions of the brain were active at the same time. The analysis revealed that those who learned new sequences more quickly in later sessions were those whose brains had displayed more 'flexibility' in the earlier sessions — that is, different areas of the brain linked with different regions at different times.

Most memory research has concerned itself with learning over time, but many memories, of course, become fixed in our mind after only one experience. The mechanism by which we acquire knowledge from single events is not well understood, but a new study sheds some light on it.

Readers of my books and articles will know that

The role of sleep in consolidating memory is now well-established, but recent research suggests that sleep also reorganizes memories, picking out the emotional details and reconfiguring the memories to help you produce new and creative ideas. In an experiment in which participants were shown scenes of negative or neutral objects at either 9am or 9pm and tested 12 hours later, those tested on the same day tended to forget the negative scenes entirely, while those who had a night’s sleep tended to remember the negative objects but not their neutral backgrounds.

Because people with damage to their

Metamemory or metacognition — your ability to monitor your own cognitive processes — is central to efficient and effective learning. Research has also shown that, although we customarily have more faith in person’s judgment the more confident they are in it, a person’s accuracy and their confidence in their accuracy are two quite separate things (which is not to say it’s not a useful heuristic; just that it’s far from infallible).

Commercial use is a long way off, but research with mice offers hope for a ‘smart drug’ that doesn’t have the sort of nasty side-effects that, for example, amphetamines have. The mice, genetically engineered to produce dramatically less (70%) kynurenic acid, had markedly better cognitive abilities. The acid, unusually, is produced not in neurons but in

Manipulation of nearly 16 million individual samples of scores and more than 8 trillion individual scores on commonly used tests, including civil service and other pre-employment exams and university entrance exams, has revealed that the tools used to check tests of "general mental ability" for bias overwhelmingly and repeatedly missed the bias inserted in the data. In other words, we’ve been testing potential test bias with a biased procedure.

Rodent studies have demonstrated the existence of specialized neurons involved in spatial memory. These ‘grid cells’ represent where an animal is located within its environment, firing in patterns that show up as geometrically regular, triangular grids when plotted on a map of a navigated surface. Now for the first time, evidence for these cells has been found in humans. Moreover, those with the clearest signs of grid cells performed best in a virtual reality spatial memory task, suggesting that the grid cells help us to remember the locations of objects.

No surprise to me (I’m hopeless at faces), but a twin study has found that face recognition is heritable, and that it is inherited separately from IQ. The findings provide support for a modular concept of the brain, suggesting that some cognitive abilities, like face recognition, are shaped by specialist genes rather than generalist genes. The study used 102 pairs of identical twins and 71 pairs of fraternal twins aged 7 to 19 from Beijing schools to calculate that 39% of the variance between individuals on a face recognition task is attributable to genetic effects.

A new theory suggests that more intelligent people are more likely than less intelligent people to adopt evolutionarily novel preferences and values, and that these values include liberalism (caring about numerous genetically unrelated strangers they never meet or interact with), atheism, and, in men, monogamy.

An imaging study reveals that different brain regions are involved in learning nouns and verbs. Nouns activate the left

Previous research has found that individual neurons can become tuned to specific concepts or categories. We can have "cat" neurons, and "car" neurons, and even an “Angelina Jolie” neuron. A new monkey study, however, reveals that although some neurons were more attuned to car images and others to animal images, many neurons were active in both categories. More importantly, these "multitasking" neurons were in fact the best at making correct identifications when the monkey alternated between two category problems.

Several reports have come out in recent years on how recent events replay in the

Perhaps we should start thinking of language less as some specialized process and more as one approach to thought. A study involving native signers of American Sign Language (which has the helpful characteristic that subject-object relationships can be expressed in either of the two ways languages usually use: word order or inflection) has revealed that there are distinct regions of the brain that are used to process the two types of sentences: those in which word order determined the relationships between the sentence elements, and those in which inflection was providing the information.


It’s now well established that sleep plays an important role in memory and learning. Now a new study suggests that dreams also play a part in consolidating memories. The study involved 99 subjects training for an hour on a computerized maze task, and then either taking a 90-minute nap or engaging in quiet activities. Intermittently, subjects were asked to describe what was going through their minds, or what they had been dreaming about. Five hours after training, the subjects were retested on the maze task.

There is a pervasive myth that every detail of every experience we've ever had is recorded in memory. It is interesting to note therefore, that even very familiar objects, such as coins, are rarely remembered in accurate detail1.

We see coins every day, but we don't see them. What we remember about coins are global attributes, such as size and color, not the little details, such as which way the head is pointing, what words are written on it, etc. Such details are apparently noted only if the person's attention is specifically drawn to them.

Modigliani, V., Loverock, D.S. & Kirson, S.R. (1998). Encoding features of complex and unfamiliar objects. American Journal Of Psychology, 111, 215-239.