Age-related drop in body temperature worsens Alzheimer's disease

  • A mouse study suggests that some Alzheimer’s symptoms are made worse by falling body temperature — and are helped by improving body temperature.

Our bodies’ ability to regulate its temperature gets worse with age, along with a slowing metabolism. We also become more vulnerable to Alzheimer's as we age. A study compared mice genetically engineered to manifest Alzheimer's symptoms as they age with normal mice. They found that these transgenic mice were worse at maintaining their body temperature as they aged, with the difference reaching almost 1° Celsius by the age of 12 months.

Moreover, there was an increase in Alzheimer’s symptoms (such as a greater increase in abnormal tau proteins and loss of synaptic proteins) in transgenic mice when they were exposed to low temperatures.

But — and this is the exciting bit — when the mice were given one week in a 28°C environment, and their body temperature increased by 1°C, beta-amyloid production dropped substantially, and memory test results were comparable to those of normal mice.

While obviously these results need to be replicated in humans, the findings do suggest that improving body temperature might be helpful for those in early stages of Alzheimer’s. Body temperature can be increased through physical activity, diet, drugs, or simply by turning the heat up.

http://www.eurekalert.org/pub_releases/2016-04/ul-dib040716.php

Reference: 

Related News

Blocking a receptor involved in inflammation in the brains of mice with severe Alzheimer’s produced marked recovery in blood flow and vascular reactivity, a dramatic reduction in toxic amyloid-beta, and significant improvements in learning and memory.

A multi-year study involving 207 healthy older adults, in which their spinal fluids were repeatedly sampled and their brains repeatedly scanned, has found that disruptions in the default mode network emerges about the same time as chemical markers of Alzheimer’s appear in the spinal fluid (decre

An analysis of the anatomical connectivity in the brains of 15 people with Alzheimer's disease, 68 with mild cognitive impairment and 28 healthy older individuals, has found several measures showed disease effects:

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news