Advice vs. experience: Genes predict learning style

May, 2011

Three gene variants governing dopamine response in the prefrontal cortex and the striatum affect how likely we are to persist with inaccurate beliefs in the face of contradictory experience.

We learn from what we read and what people tell us, and we learn from our own experience. Although you would think that personal experience would easily trump other people’s advice, we in fact tend to favor abstract information against our own experience. This is seen in the way we commonly distort what we experience in ways that match what we already believe. But there is probably good reason for this tendency (reflected in confirmation bias), even if it sometimes goes wrong.

But of course individuals vary in the extent to which they persist with bad advice. A new study points to genes as a critical reason. Different brain regions are involved in the processing of these two information sources (advice vs experience): the prefrontal cortex and the striatum. Variants in the genes DARPP-32 and DRD2 affect the response to dopamine in the striatum. Variation in the gene COMT, on the other hand, affects dopamine response in the prefrontal cortex.

In the study, over 70 people performed a computerized learning task in which they had to pick the "correct" symbol, which they learned through trial and error. For some symbols, subjects were given advice, and sometimes that advice was wrong.

COMT gene variants were predictive of the degree to which participants persisted in responding in accordance with prior instructions even as evidence against their correctness grew. Variants in DARPP-32 and DRD2 predicted learning from positive and negative outcomes, and the degree to which such learning was overly inflated or neglected when outcomes were consistent or inconsistent with prior instructions.


Related News

A certain level of mental decline in the senior years is regarded as normal, but some fortunate few don’t suffer from any decline at all.

Previous research has found that carriers of the so-called

There has been a lot of argument over the years concerning the role of genes in intelligence. The debate reflects the emotions involved more than the science. A lot of research has gone on, and it is indubitable that genes play a significant role.

I commonly refer to ApoE4 as the ‘Alzheimer’s gene’, because it is the main genetic risk factor, tripling the risk for getting Alzheimer's. But it is not the only risky gene.

A two-year study involving 53 older adults (60+) has found that those with a mother who had Alzheimer's disease had significantly more brain atrophy than those with a father or no parent with Alzheimer's disease.

A study involving 750 sets of twins assessed at about 10 months and 2 years, found that at 10 months, there was no difference in how the children from different socioeconomic backgrounds performed on tests of early cognitive ability.

A twin study involving 457 pairs has found that ADHD on its own was associated with a reduced ability to inhibit responses to stimuli, while reading disabilities were associated independently with weaknesses on measures of phoneme awareness, verbal reasoning, and

A study involving 68 healthy older adults (65-85) has compared brain activity among four groups, determined whether or not they carry the Alzheimer’s gene ApoE4 and whether their physical activity is reported to be high or low.

While brain laterality exists widely among animal species, the strong dominance of right-handedness in humans is something of an anomaly.

Last month I reported on a finding that toddlers with autism spectrum disorder showed a strong preference for looking at moving shapes rather than active people.


Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news