Advice vs. experience: Genes predict learning style

May, 2011

Three gene variants governing dopamine response in the prefrontal cortex and the striatum affect how likely we are to persist with inaccurate beliefs in the face of contradictory experience.

We learn from what we read and what people tell us, and we learn from our own experience. Although you would think that personal experience would easily trump other people’s advice, we in fact tend to favor abstract information against our own experience. This is seen in the way we commonly distort what we experience in ways that match what we already believe. But there is probably good reason for this tendency (reflected in confirmation bias), even if it sometimes goes wrong.

But of course individuals vary in the extent to which they persist with bad advice. A new study points to genes as a critical reason. Different brain regions are involved in the processing of these two information sources (advice vs experience): the prefrontal cortex and the striatum. Variants in the genes DARPP-32 and DRD2 affect the response to dopamine in the striatum. Variation in the gene COMT, on the other hand, affects dopamine response in the prefrontal cortex.

In the study, over 70 people performed a computerized learning task in which they had to pick the "correct" symbol, which they learned through trial and error. For some symbols, subjects were given advice, and sometimes that advice was wrong.

COMT gene variants were predictive of the degree to which participants persisted in responding in accordance with prior instructions even as evidence against their correctness grew. Variants in DARPP-32 and DRD2 predicted learning from positive and negative outcomes, and the degree to which such learning was overly inflated or neglected when outcomes were consistent or inconsistent with prior instructions.

Reference: 

Related News

Analysis of data from 418 older adults (70+) has found that carriers of the ‘Alzheimer’s gene’, APOEe4, were 58% more likely to develop mild cognitive impairment compared to non-carriers.

A rat study has found that infant males have more of the Foxp2 protein (associated with language development) than females and that males also made significantly more distress calls than females.

While the ‘Alzheimer’s gene’ is relatively common — the ApoE4 mutation is present in around 15% of the population — having two copies of the mutation is, thankfully, much rarer, at around 2%.

A study involving those with a strong genetic risk of developing Alzheimer’s has found that the first signs of the disease can be detected 25 years before symptoms are evident.

A number of studies have come out in recent years linking age-related cognitive decline and dementia risk to inflammation and infection (put inflammation into the “Search this site” box at the top of the page and you’ll see what I mean). New research suggests one important mechanism.

I’ve reported before on the evidence suggesting that carriers of the ‘Alzheimer’s gene’, APOE4, tend to have smaller brain volumes and perform worse on cognitive tests, despite being cognitively ‘normal’.

I’ve mentioned before that, for some few people, exercise doesn’t seem to have a benefit, and the benefits of exercise for fighting age-related cognitive decline may not apply to those carrying the Alzheimer’s gene.

Genetic analysis of 9,232 older adults (average age 67; range 56-84) has implicated four genes in how fast your

Another study adds to the evidence that changes in the brain that may lead eventually to Alzheimer’s begin many years before Alzheimer’s is diagnosed.

Iron deficiency is the world's single most common nutrient deficiency, and a well-known cause of impaired cognitive, language, and motor development. Many countries therefore routinely supplement infant foods with iron.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news