Individual differences in Alzheimer's molecular structure

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical histories and degrees of brain damage. A comparison of amyloid-beta fibril fragments from the brain tissue of two patients with different clinical histories and degrees of brain damage found different molecular structures, confirming cell research showing that amyloid-beta fibrils grown in a dish have different molecular structures depending on the specific growth conditions.

Obviously, this is a very small study, and will need to be confirmed across more patients. However, it’s important for indicating that structural variations may correlate with variations in Alzheimer’s, and that structure-specific amyloid imaging agents may need to be used.

http://www.eurekalert.org/pub_releases/2013-09/cp-aps090513.php

[3587] Lu, J-X., Qiang W., Yau W-M., Schwieters C D., Meredith S C., & Tycko R.
(2013).  Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue.
Cell. 154(6), 1257 - 1268.

Related News

As we all know, people are living longer and obesity is at appalling levels. For both these (completely separate!) reasons, we expect to see growing rates of dementia. A new analysis using data from the long-running Framingham Heart Study offers some hope to individuals, however.

A study involving 39 older adults has found that those randomly assigned to a “high-challenge” group showed improved cognitive performance and more efficient brain activity compared with those assigned to a low-challenge group, or a control group.

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

A study involving 266 people with mild cognitive impairment (aged 70+) has found that B vitamins are more effective in slowing cognitive decline when people have higher omega 3 levels.

Growing research has implicated infections as a factor in age-related cognitive decline, but these have been cross-sectional (comparing different individuals, who will have a number of other, possibly confounding, attributes).

Another study adds to the growing evidence that a Mediterranean diet is good for the aging brain.

A two-year study which involved metabolic testing of 50 people, suggests that Alzheimer's disease consists of three distinct subtypes, each one of which may need to be treated differently. The finding may help explain why it has been so hard to find effective treatments for the disease.

A study involving both mice and human cells adds to evidence that stress is a risk factor for Alzheimer's.

Data from 23,572 Americans from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study has revealed that those who survived a stroke went on to have significantly faster rates of cognitive decline as they aged.

A study involving 382 older adults (average age 75) followed for around five years, has found that those who don’t get enough vitamin D may experience cognitive decline at a much faster rate than people who have adequate vitamin D.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.