Strategies

New direction for cognitive training in the elderly

October, 2012

A pilot study suggests declines in temporal processing are an important part of age-related cognitive decline, and shows how temporal training can significantly improve some cognitive abilities.

Here’s an exciting little study, implying as it does that one particular aspect of information processing underlies much of the cognitive decline in older adults, and that this can be improved through training. No, it’s not our usual suspect, working memory, it’s something far less obvious: temporal processing.

In the study, 30 older adults (aged 65-75) were randomly assigned to three groups: one that received ‘temporal training’, one that practiced common computer games (such as Solitaire and Mahjong), and a no-activity control. Temporal training was provided by a trademarked program called Fast ForWord Language® (FFW), which was developed to help children who have trouble reading, writing, and learning.

The training, for both training groups, occupied an hour a day, four days a week, for eight weeks.

Cognitive assessment, carried out at the beginning and end of the study, and for the temporal training group again 18 months later, included tests of sequencing abilities (how quickly two sounds could be presented and still be accurately assessed for pitch or direction), attention (vigilance, divided attention, and alertness), and short-term memory (working memory span, pattern recognition, and pattern matching).

Only in the temporal training group did performance on any of the cognitive tests significantly improve after training — on the sequencing tests, divided attention, matching complex patterns, and working memory span. These positive effects still remained after 18 months (vigilance was also higher at the end of training, but this improvement wasn’t maintained).

This is, of course, only a small pilot study. I hope we will see a larger study, and one that compares this form of training against other computer training programs. It would also be good to see some broader cognitive tests — ones that are less connected to the temporal training. But I imagine that, as I’ve discussed before, an effective training program will include more than one type of training. This may well be an important component of such a program.

Reference: 

[3075] Szelag E, Skolimowska J. Cognitive function in elderly can be ameliorated by training in temporal information processing. Restorative Neurology and Neuroscience [Internet]. 2012 ;30(5):419 - 434. Available from: http://dx.doi.org/10.3233/RNN-2012-120240

Source: 

tags memworks: 

Topics: 

tags problems: 

tags strategies: 

tags development: 

Spatial skills can be improved through training

October, 2012

A review has concluded that spatial training produces significant improvement, particularly for poorer performers, and that such training could significantly increase STEM achievement.

Spatial abilities have been shown to be important for achievement in STEM subjects (science, technology, engineering, math), but many people have felt that spatial skills are something you’re either born with or not.

In a comprehensive review of 217 research studies on educational interventions to improve spatial thinking, researchers concluded that you can indeed improve spatial skills, and that such training can transfer to new tasks. Moreover, not only can the right sort of training improve spatial skill in general, and across age and gender, but the effect of training appears to be stable and long-lasting.

One interesting finding (the researchers themselves considered it perhaps the most important finding) was the diversity in effective training — several different forms of training can be effective in improving spatial abilities. This may have something to do with the breadth covered by the label ‘spatial ability’, which include such skills as:

  • Perceiving objects, paths, or spatial configurations against a background of distracting information;
  • Piecing together objects into more complex configurations, visualizing and mentally transforming objects;
  • Understanding abstract principles, such as horizontal invariance;
  • Visualizing an environment in its entirety from a different position.

The review compared three types of training. Those that used:

  • Video games (24 studies)
  • Semester-long instructional courses on spatial reasoning (42 studies)
  • Practical training, often in a lab, that involved practicing spatial tasks, strategic instruction, or computerized lessons (138 studies).

The first two are examples of indirect training, while the last involves direct training.

On average, taken across the board, training improved performance by well over half a standard deviation when considered on its own, and still almost one half of a standard deviation when compared to a control group. This is a moderately large effect, and it extended to transfer tasks.

It also conceals a wide range, most of which is due to different treatment of control groups. Because the retesting effect is so strong in this domain (if you give any group a spatial test twice, regardless of whether they’ve been training in between the two tests, they’re going to do better on the second test), repeated testing can have a potent effect on the control group. Some ‘filler’ tasks can also inadvertently improve the control group’s performance. All of this will reduce the apparent effect of training. (Not having a control group is even worse, because you don’t know how much of the improvement is due to training and how much to the retesting effect.)

This caution is, of course, more support for the value of practice in developing spatial skills. This is further reinforced by studies that were omitted from the analysis because they would skew the data. Twelve studies found very high effect sizes — more than three times the average size of the remaining studies. All these studies took place in poorly developed countries (those with a Human Development Index above 30 at the time of the study) — Malaysia, Turkey, China, India, and Nigeria. HDI rating was even associated with the benefits of training in a dose-dependent manner — that is, the lower the standard of living, the greater the benefit.

This finding is consistent with other research indicating that lower socioeconomic status is associated with larger responses to training or intervention.

In similar vein, when the review compared 19 studies that specifically selected participants who scored poorly on spatial tests against the other studies, they found that the effects of training were significantly bigger among the selected studies.

In other words, those with poorer spatial skills will benefit most from training. It may be, indeed, that they are poor performers precisely because they have had little practice at these tasks — a question that has been much debated (particularly in the context of gender differences).

It’s worth noting that there was little difference in performance on tests carried out immediately after training ended, within a week, or within a month, indicating promising stability.

A comparison of different types of training did find that some skills were more resistant to training than others, but all types of spatial skill improved. The differences may be because some sorts of skill are harder to teach, and/or because some skills are already more practiced than others.

Given the demonstrated difficulty in increasing working memory capacity through training, it is intriguing to notice one example the researchers cite: experienced video game players have been shown to perform markedly better on some tasks that rely on spatial working memory, such as a task requiring you to estimate the number of dots shown in a brief presentation. Most of us can instantly recognize (‘subitize’) up to five dots without needing to count them, but video game players can typically subitize some 7 or 8. The extent to which this generalizes to a capacity to hold more elements in working memory is one that needs to be explored. Video game players also apparently have a smaller attentional blink, meaning that they can take in more information.

A more specific practical example of training they give is that of a study in which high school physics students were given training in using two- and three-dimensional representations over two class periods. This training significantly improved students’ ability to read a topographical map.

The researchers suggest that the size of training effect could produce a doubling of the number of people with spatial abilities equal to or greater than that of engineers, and that such training might lower the dropout rate among those majoring in STEM subjects.

Apart from that, I would argue many of us who are ‘spatially-challenged’ could benefit from a little training!

Reference: 

Source: 

tags lifestyle: 

Topics: 

tags strategies: 

tags memworks: 

When multitasking is more of a problem

October, 2012

Multitasking is significantly worse if your tasks use the same modality. Instant messaging while doing another visual-motor task reduces performance more than talking on the phone.

I’ve reported, often, on the evidence that multitasking is a problem, something we’re not really designed to do well (with the exception of a few fortunate individuals), and that the problem is rooted in our extremely limited working memory capacity. I’ve also talked about how ‘working memory’ is a bit of a misnomer, given that we probably have several ‘working memories’, for different modalities.

It follows from that, that tasks that use different working memories should be easier to do at the same time than tasks that use the same working memory. A new study confirms that multitasking is more difficult if you are trying to use the same working memory modules for both tasks.

In the study, 32 students carried out a visual pattern-matching task on a computer while giving directions to another person either via instant messaging (same modalities — vision and motor) or online voice chat (different modality — hearing).

While both simultaneous tasks significantly worsened performance on the pattern-matching task, communicating by IM (same modality) led to a 50% drop in visual pattern-matching performance (from a mean of 11 correct responses to a mean of 5), compared to only a 30% drop in the voice condition (mean of 7).

The underlying reason for the reductions in performance seems to be in the effect on eye movement: the number and duration of eye fixations was reduced in both dual-task conditions, and more so in the IM condition.

Note that this is apparently at odds with general perception. According to one study, IM is perceived to be less disruptive than the phone. Moreover, in the current study, participants felt they performed better in the IM condition (although this palpably wasn’t true). This feeling may reflect the greater sense of personal control in instant messaging compared to chat. It may also reflect an illusion of efficiency generated by using the visual channel — because we are so strongly practiced in using vision, we may find visual tasks more effortless than tasks using other modalities. (I should note that most people, regardless of the secondary task, felt they did better than they had! But those in the IM condition were more deluded than those in the chat condition.)

The finding also explains why texting is particularly dangerous when driving — both rely heavily on the same modalities.

All this is consistent with the idea that there are different working memory resources which can operate in parallel, but share one particular resource which manages the other resources.

The idea of ‘threaded cognition’ — of maintaining several goal threads and strategically allocating resources as needed — opens up the idea that multitasking is not all bad. In recent years, we have focused on multitasking as a problem. This has been a very necessary emphasis, given that its downsides were unappreciated. But although multitasking has its problems, it may be that there are trade-offs that come from the interaction between the tasks being carried out.

In other words, rather than condemning multitasking, we need to learn its parameters. This study offers one approach.

Reference: 

Source: 

tags memworks: 

tags problems: 

Topics: 

More support for value of cognitive activities in fighting cognitive decline in old age

September, 2012

Two recent conference presentations add to the evidence for the benefits of ‘brain training’, and of mental stimulation, for holding back age-related cognitive decline.

My recent reports on brain training for older adults (see, e.g., Review of working memory training programs finds no broader benefit; Cognitive training shown to help healthy older adults; Video game training benefits cognition in some older adults) converge on the idea that cognitive training can indeed be beneficial for older adults’ cognition, but there’s little wider transfer beyond the skills being practiced. That in itself can be valuable, but it does reinforce the idea that the best cognitive training covers a number of different domains or skill-sets. A new study adds little to this evidence, but does perhaps emphasize the importance of persistence and regularity in training.

The study involved 59 older adults (average age 84), of whom 33 used a brain fitness program 5 days a week for 30 minutes a day for at least 8 weeks, while the other group of 26 were put on a waiting list for the program. After two months, both groups were given access to the program, and both were encouraged to use it as much or as little as they wanted. Cognitive testing occurred before the program started, at two months, and at six months.

The first group to use the program used the program on average for 80 sessions, compared to an average 44 sessions for the wait-list group.

The higher use group showed significantly higher cognitive scores (delayed memory test; Boston Naming test) at both two and six months, while the lower (and later) use group showed improvement at the end of the six month period, but not as much as the higher use group.

I’m afraid I don’t have any more details (some details of the training program would be nice) because it was a conference presentation, so I only have access to the press release and the abstract. Because we don’t know exactly what the training entailed, we don’t know the extent to which it practiced the same skills that were tested. But we may at least add it to the evidence that you can improve cognitive skills by regular training, and that the length/amount of training (and perhaps regularity, since the average number of sessions for the wait-list group implies an average engagement of some three times a week, while the high-use group seem to have maintained their five-times-a-week habit) matters.

Another interesting presentation at the conference was an investigation into mental stimulating activities and brain activity in older adults.

In this study, 151 older adults (average age 82) from the Rush Memory and Aging Project answered questions about present and past cognitive activities, before undergoing brain scans. The questions concerned how frequently they engaged in mentally stimulating activities (such as reading books, writing letters, visiting a library, playing games) and the availability of cognitive resources (such as books, dictionaries, encyclopedias) in their home, during their lifetime (specifically, at ages 6, 12, 18, 40, and now).

Higher levels of cognitive activity and cognitive resources were also associated with better cognitive performance. Moreover, after controlling for education and total brain size, it was found that frequent cognitive activity in late life was associated with greater functional connectivity between the posterior cingulate cortex and several other regions (right orbital and middle frontal gyrus, left inferior frontal gyrus, hippocampus, right cerebellum, left inferior parietal cortex). More cognitive resources throughout life was associated with greater functional connectivity between the posterior cingulate cortex and several other regions (left superior occipital gyrus, left precuneus, left cuneus, right anterior cingulate, right middle frontal gyrus, and left inferior frontal gyrus).

Previous research has implicated a decline in connectivity with the posterior cingulate cortex in mild cognitive impairment and Alzheimer’s disease.

Cognitive activity earlier in life was not associated with differences in connectivity.

The findings provide further support for the idea “Use it or lose it!”, and suggests that mental activity protects against cognitive decline by maintaining functional connectivity in important neural networks.

Reference: 

Miller, K.J. et al. 2012. Memory Improves With Extended Use of Computerized Brain Fitness Program Among Older Adults. Presented August 3 at the 2012 convention of the American Psychological Association.

Han, S.D. et al. 2012. Cognitive Activity and Resources Are Associated With PCC Functional Connectivity in Older Adults. Presented August 3 at the 2012 convention of the American Psychological Association.

Source: 

tags development: 

Topics: 

tags problems: 

tags strategies: 

tags: 

Childhood music training has enduring benefits for hearing

September, 2012

More evidence that learning a musical instrument in childhood, even for a few years, has long-lasting benefits for auditory processing.

Adding to the growing evidence for the long-term cognitive benefits of childhood music training, a new study has found that even a few years of music training in childhood has long-lasting benefits for auditory discrimination.

The study involved 45 adults (aged 18-31), of whom 15 had no music training, 15 had one to five years of training, and 15 had six to eleven years. Participants were presented with different complex sounds ranging in pitch while brainstem activity was monitored.

Brainstem response to the sounds was significantly stronger in those with any sort of music training, compared to those who had never had any music training. This was a categorical difference — years of training didn’t make a difference (although some minimal length may be required — only one person had only one year of training). However, recency of training did make a difference to brainstem response, and it does seem that some fading might occur over long periods of time.

This difference in brainstem response means that those with music training are better at recognizing the fundamental frequency (lowest frequency sound). This explains why music training may help protect older adults from hearing difficulties — the ability to discriminate fundamental frequencies is crucial for understanding speech, and for processing sound in noisy environments.

Reference: 

[3074] Skoe E, Kraus N. A Little Goes a Long Way: How the Adult Brain Is Shaped by Musical Training in Childhood. The Journal of Neuroscience [Internet]. 2012 ;32(34):11507 - 11510. Available from: http://www.jneurosci.org/content/32/34/11507

Source: 

Topics: 

tags problems: 

tags strategies: 

tags: 

tags development: 

tags memworks: 

How piano tuning changes the brain

September, 2012

In another example of how expertise in a specific area changes the brain, brain scans of piano tuners show which areas grow, and which shrink, with experience — and starting age.

I’ve reported before on how London taxi drivers increase the size of their posterior hippocampus by acquiring and practicing ‘the Knowledge’ (but perhaps at the expense of other functions). A new study in similar vein has looked at the effects of piano tuning expertise on the brain.

The study looked at the brains of 19 professional piano tuners (aged 25-78, average age 51.5 years; 3 female; 6 left-handed) and 19 age-matched controls. Piano tuning requires comparison of two notes that are close in pitch, meaning that the tuner has to accurately perceive the particular frequency difference. Exactly how that is achieved, in terms of brain function, has not been investigated until now.

The brain scans showed that piano tuners had increased grey matter in a number of brain regions. In some areas, the difference between tuners and controls was categorical — that is, tuners as a group showed increased gray matter in right hemisphere regions of the frontal operculum, the planum polare, superior frontal gyrus, and posterior cingulate gyrus, and reduced gray matter in the left hippocampus, parahippocampal gyrus, and superior temporal lobe. Differences in these areas didn’t vary systematically between individual tuners.

However, tuners also showed a marked increase in gray matter volume in several areas that was dose-dependent (that is, varied with years of tuning experience) — the anterior hippocampus, parahippocampal gyrus, right middle temporal and superior temporal gyrus, insula, precuneus, and inferior parietal lobe — as well as an increase in white matter in the posterior hippocampus.

These differences were not affected by actual chronological age, or, interestingly, level of musicality. However, they were affected by starting age, as well as years of tuning experience.

What these findings suggest is that achieving expertise in this area requires an initial development of active listening skills that is underpinned by categorical brain changes in the auditory cortex. These superior active listening skills then set the scene for the development of further skills that involve what the researchers call “expert navigation through a complex soundscape”. This process may, it seems, involve the encoding and consolidating of precise sound “templates” — hence the development of the hippocampal network, and hence the dependence on experience.

The hippocampus, apart from its general role in encoding and consolidating, has a special role in spatial navigation (as shown, for example, in the London cab driver studies, and the ‘parahippocampal place area’). The present findings extend that navigation in physical space to the more metaphoric one of relational organization in conceptual space.

The more general message from this study, of course, is confirmation for the role of expertise in developing specific brain regions, and a reminder that this comes at the expense of other regions. So choose your area of expertise wisely!

Reference: 

Source: 

tags memworks: 

Topics: 

tags strategies: 

tags study: 

tags: 

How meditation may improve multitasking and attention

September, 2012

Three recent studies show that meditation training reduces the stress of multitasking and reduces task-switching, that it improves white matter efficiency, and that the improved executive control may be largely to do with better emotional awareness and regulation.

Meditation may improve multitasking

I recently reported that developing skill at video action games doesn’t seem to improve general multitasking ability, but perhaps another approach might be more successful. Meditation has, of course, been garnering growing evidence that it can help improve attentional control. A new study extends that research to multitasking in a realistic work setting.

The study involved three groups of 12-15 female human resource managers, of whom one group received eight weeks of mindfulness-based meditation training, another received eight weeks of body relaxation training, and another initially received no training (control), before receiving the mindfulness training after the eight weeks.

Before and after each eight-week period, the participants were given a stressful test of their multitasking abilities, requiring them to use email, calendars, instant-messaging, telephone and word-processing tools to perform common office tasks (scheduling a meeting; finding a free conference room; writing a draft announcement of the meeting, eating snacks and drinking water, writing a memo proposing a creative agenda item for the meeting). Necessary information came from emails, instant messages, telephone calls, and knocks on the door. The participants had 20 minutes to complete the tasks.

The meditation group reported lower levels of stress during the multitasking test compared to the control and relaxation groups. They also spent more time on tasks and switched tasks less often, while taking no longer to complete the overall job than the others. Both meditation and relaxation groups showed improved memory for the tasks they were performing.

After the control group underwent the meditation training, their results matched those of the meditation group.

The meditation training emphasized:

  • control of attentional focus
  • focusing attention in the present moment or task
  • switching focus
  • breath and body awareness.

The relaxation training emphasized progressive tensing and relaxing of major muscle groups, aided by relaxation imagery.

It's interesting that overall time on task didn't change (the researchers remarked that the meditators didn't take any longer, but of course most of us would be looking for it to become shorter!), but I wouldn't read too much into it. The task was relatively brief. It would be interesting to see the effects over the course of, say, a day. Nor did the study look at how well the tasks were done.

But it is, of course, important that meditation training reduced task-switching and stress. Whether it also has a postitive effect on overall time and quality of work is a question for another day.

IBMT improves white matter efficiency

A recent imaging study has found that four weeks of a form of mindfulness meditation called integrative body–mind training (IBMT) improved white matter efficiency in areas surrounding the anterior cingulate cortex, compared to controls given relaxation training.

The anterior cingulate is part of the brain network related to self-regulation. Deficits in activation in this part of the brain have been associated with attention deficit disorder, dementia, depression, schizophrenia, and other disorders.

Using the data from a 2010 study involving 45 U.S. college students, and another involving 68 Chinese students, researchers found that axon density (one factor in white matter efficiency) had improved after two weeks, but not myelin formation. After a month (about 11 hours of meditation), both had improved. Mood improved by two weeks.

Previous studies involving computer-based training for improving working memory have found changes in myelination, but not axon density.

Meditators’ better cognitive control may be rooted in emotional regulation

Previous work has found that people who engage in meditation show higher levels of executive control on laboratory tasks.

An electrical signal called the Error Related Negativity (ERN) occurs in the brain within 100 ms of an error being committed. When meditators and non-meditators were given the Stroop Test, meditators not only tended to do better on the test, but their ERNs were stronger.

The interesting thing about this is that the best performers were those who scored highest on emotional acceptance. Mindful awareness was less important. It’s suggested that meditators may be able to control their behavior better not because of their sharper focus, but because they are more aware of their emotions and regulate them better.

Something to think about!

Reference: 

Levy, D. M., Wobbrock, J. O., Kaszniak, A. W., & Ostergren, M. (2012). The Effects of Mindfulness Meditation Training on Multitasking in a High-Stress Information Environment, 45–52. Full text available at http://faculty.washington.edu/wobbrock/pubs/gi-12.02.pdf

[3051] Tang Y-Y, Lu Q, Fan M, Yang Y, Posner MI. Mechanisms of white matter changes induced by meditation. Proceedings of the National Academy of Sciences [Internet]. 2012 ;109(26):10570 - 10574. Available from: http://www.pnas.org/content/109/26/10570

[3052] Teper R, Inzlicht M. Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring. Social Cognitive and Affective Neuroscience [Internet]. 2012 . Available from: http://scan.oxfordjournals.org/content/early/2012/05/13/scan.nss045

Source: 

tags memworks: 

Topics: 

tags strategies: 

tags problems: 

Video gamers don’t become expert multitaskers

August, 2012

A comparison of skilled action gamers and non-gamers reveals that all that multitasking practice doesn’t make you any better at multitasking in general.

The research is pretty clear by this point: humans are not (with a few rare exceptions) designed to multitask. However, it has been suggested that the modern generation, with all the multitasking they do, may have been ‘re-wired’ to be more capable of this. A new study throws cold water on this idea.

The study involved 60 undergraduate students, of whom 34 were skilled action video game players (all male) and 26 did not play such games (19 men and 7 women). The students were given three visual tasks, each of which they did on its own and then again while answering Trivial Pursuit questions over a speakerphone (designed to mimic talking on a cellphone).

The tasks included a video driving game (“TrackMania”), a multiple-object tracking test (similar to a video version of a shell game), and a visual search task (hidden pictures puzzles from Highlights magazine).

While the gamers were (unsurprisingly) significantly better at the video driving game, the non-gamers were just as good as them at the other two tasks. In the dual-tasking scenarios, performance declined on all the tasks, with the driving task most affected. While the gamers were affected less by multitasking during the driving task compared to the non-gamers, there was no difference in the amount of decline between gamers and non-gamers on the other two tasks.

Clearly, the smaller effect of dual-tasking on the driving game for gamers is a product of their greater expertise at the driving game, rather than their ability to multitask better. It is well established that the more skilled you are at a task, the more automatic it becomes, and thus the less working memory capacity it will need. Working memory capacity / attention is the bottleneck that prevents us from being true multitaskers.

In other words, the oft-repeated (and somewhat depressing) conclusion remains: you can’t learn to multitask in general, you can only improve specific skills, enabling you to multitask reasonably well while doing those specific tasks.

Reference: 

Source: 

Topics: 

tags strategies: 

tags study: 

tags lifestyle: 

tags memworks: 

tags problems: 

Tai Chi improves cognition and brain size in older adults

August, 2012

A comparison of the effects of regular sessions of tai chi, walking, and social discussion, has found tai chi was associated with the biggest gains in brain volume and improved cognition.

The study involved 120 healthy older adults (60-79) from Shanghai, who were randomly assigned to one of four groups: one that participated in three sessions of tai chi every week for 40 weeks; another that instead had ‘social interaction’ sessions (‘lively discussions’); another in which participants engaged in walking around a track; and a non-intervention group included as a control. Brain scans were taken before and after the 40-week intervention, and cognitive testing took place at 20 weeks as well as these times.

Compared to those who received no intervention, both those who participated in tai chi, and those who participated in the social sessions, showed significant increases in brain volume and on some cognitive measures. However, the tai chi group showed improvement on more cognitive tests than the social group (on the Mattis Dementia Rating Scale, the Trailmaking Tests, delayed recognition on the Auditory Verbal Learning Test, and verbal fluency for animals vs verbal fluency and positive trends only on Trails A and the Auditory test).

Surprisingly, there were no such significant effects from the walking intervention, which involved 30 minutes of brisk walking around a 400m circular track, sandwiched by 10 minutes of warm-up and 10 minutes cool-down exercises. This took place in the same park as the tai chi sessions (which similarly included 20 minutes of warm-up exercises, 20 minutes of tai chi, and 10 minutes of cool-down exercises).

This finding is inconsistent with other research, but the answer seems to lie in individual differences — specifically, speed of walking. Faster walkers showed significantly better performance on the Stroop test, and on delayed recall and recognition on the Auditory Verbal Learning Test. It should be noted that, unlike some studies in which participants were encouraged to reach heart-rate targets, participants in this study were simply told to walk at their own speed. This finding, then, would seem to support the view that brisk walking is needed to reap good health and cognitive benefits (which shouldn’t put anyone off — anything is better than nothing! and speed is likely to come with practice, if that’s your aim).

It should also be noted that this population has generally high rates of walking. It is likely, then, that the additional walking in these sessions did not add a great deal to their existing behavior.

There is a caveat to the strongly positive effects of tai chi: this group showed lower cognitive performance at baseline. This was because the group randomly received more individuals with very low scores (8 compared with 5 in the other groups).

The study is, of course, quite a small one, and a larger study is required to confirm these results.

One final note: the relative differences in enjoyment were not explicitly investigated, but the researchers did note that the social group, who initially were given topics to discuss in their hour-long sessions, then decided to select and organize their own discussions, and have continued to do so for two years following the end of the study. It would have been nice if the researchers had re-tested participants at that point.

Reference: 

Mortimer, J.A. et al. 2012. Changes in Brain Volume and Cognition in a Randomized Trial of Exercise and Social Interaction in a Community-Based Sample of Non-Demented Chinese Elders. Journal of Alzheimer's Disease, 30 (4), 757-766.
Full text available at http://health.usf.edu/nocms/publicaffairs/now/pdfs/JAD_Mortimer_30%28201...

Source: 

tags development: 

Topics: 

tags lifestyle: 

tags problems: 

tags: 

Boost creativity by living abroad

August, 2012

Support for previous findings associating study abroad with increased creativity comes from a study comparing those who studied abroad with those who plan to, and those with no such intentions.

A couple of years ago I briefly reported on a finding that students who had lived abroad demonstrated greater creativity, if they first recalled a multicultural learning experience from their life abroad. A new study examines this connection, in particular investigating the as-yet-unanswered question of whether students who studied abroad were already more creative than those who didn’t.

The study involved 135 students of whom 45 had studied abroad, 45 were planning to do so, and 45 had not and were not planning to. The groups did not differ significantly in terms of age, gender, or ethnicity, and data from a sample (a third of each group) revealed no differences in terms of GPA and SAT scores. Creativity was assessed using the domain-general Abbreviated Torrance Test for Adults (ATTA) and the culture-specific Cultural Creativity Task (CCT).

Those in the Study Abroad group scored significantly higher on the CCT than those in the other two groups, who didn’t differ from each other. Additionally, those in the Study Abroad group scored significantly higher on the ATTA than those in the No Plan to Study group (those in the Plan to Study group were not significantly different from either of the other two groups).

It seems clear, then, that the findings of earlier studies are indeed ‘real’ (students who study abroad really do come home more creative than before they went) and not a product of self-selection (more creative students are more likely to travel). But the difference between the two creativity tests needs some explanation.

There is a burning issue in creativity research: is creativity a domain-general attribute, or a domain-specific one? This is not a pedantic, theoretical question! If you’re ‘creative’, does that mean you’re equally creative in all areas, or just in specific areas? Or (more likely, it seems to me) is creativity both domain-general and domain-specific?

The ATTA, as I said, measures general creativity. It does so through three 3-minute tasks: identify the troubles you might have if you could walk on air or fly (without benefit of vehicle); draw a picture using two incomplete figures (provided); draw pictures using 9 identical isosceles triangles.

The CCT has five 3-minute tasks that target culturally relevant knowledge and skills. in each case, participants are asked to give as many ideas as they can in response to a specific scenario: getting more foreign tourists to visit America; the changes that would result if you woke up with different skin color; demonstrating high social status; developing new dishes using exotic ingredients; creating a product with universal appeal.

The findings would seem to support the idea that creativity has both general and specific elements. The greater effect of studying abroad on CCT scores (compared to ATTA scores) also seem to me to be consistent with the finding I cited at the beginning — that, to get the benefit, students needed to be reminded of their multicultural experiences. In this case, the CCT scenarios would seem to play that role.

It does of course make complete sense that living abroad would have positive benefits for creativity. Creativity is about not following accustomed ruts in one’s thoughts. Those ruts are not simply generated within our own mind (as we get older, our ruts tend to get deeper), but are products of our relationship with our society. Think of clichés. The more we follow along with accustomed language and thought patterns of our group, the less creative we will be. One way to break (or at least broaden) this, is to widen our groups — by, for example, mixing in diverse circles, or by living abroad.

Interestingly, another recent study (pdf link to paper) reckons that social rejection (generally regarded as a bad thing) can make some people more creative — if they’re independent types who take pride in being different from others.

Reference: 

Lee, C. S., Therriault, D. J., & Linderholm, T. (2012). On the Cognitive Benefits of Cultural Experience: Exploring the Relationship between Studying Abroad and Creative Thinking. Applied Cognitive Psychology, n/a–n/a. doi:10.1002/acp.2857

Kim, S. H., Vincent, L. C., & Goncalo, J. A. (In press). Outside Advantage: Can Social Rejection Fuel Creative Thought? Journal of Experimental Psychology. General.
 

Source: 

tags memworks: 

tags strategies: 

Topics: 

Pages

Subscribe to RSS - Strategies