attention problems

Working memory

Working memory is one of the most important concepts in understanding and improving your memory.

Your working memory capacity is a critical factor in determining your ability to :

  • take good notes,
  • read efficiently,
  • understand complex issues,
  • reason.

Indeed it may be that it is your working memory capacity that best ‘measures’ your intelligence.

Short-term vs long-term memory

Working memory is a relatively recent term, a refinement of an older concept - that of short-term memory. Short-term memory was called thus to distinguish it from "long-term memory" - your memory store.

One important difference between the idea of short-term memory and working memory, is that short-term memory was conceived of as a thing. Different from long-term memory (variously analogized as a library, a filing system, a computer) chiefly in the duration of the records it held. But working memory, as its name suggests, is now conceived more as a process than a thing. A state of mind. A pattern of activation.

Working memory contains the information of which you are immediately aware.

To put information into our memory store, it must ... be worked on - i.e., be held in working memory. To get information out of the memory store - to “remember” something - it must again be in an active state - be in working memory. How can we know what we remember if we're not conscious of it?

However, you can only keep something "active" for a very short time without your conscious attention. It is this which so limits working memory capacity.

The magic number seven

Probably the most widely known fact about working memory is that it can only hold around seven chunks of information (between 5 and 9). However, this tells us little about the limits of working memory because the size of a chunk is indeterminate.

1 2 3 4 5 6 7 are seven different chunks - if you remember each digit separately (as you would, for example, if you were not familiar with the digits - as a young child isn't). But for those of us who are only too well-versed in our numbers, 1 through to 7 could be a single chunk.

Recent research suggests however, that it is not so much the number of chunks that is important. What may be important may be how long it takes you to say the words (information is usually held in working memory in the form of an acoustic - sound-based - code). It appears that you can only hold in working memory what you can say in 1.5 — 2 seconds. Slow speakers are therefore penalized.

Your working memory capacity

What we term "working memory" contains several functions, including the "central executive" which coordinates and manages the various tasks needed. The extent to which working memory is domain-specific (different "working memories", if you like, for different sensory and cognitive systems, such as language, spatial memory, number) is still very much debated. However, at a practical level, we may think of working memory as containing several different components, for which you have different "capacities". Thus, your capacity for numbers may well be quite different from your capacity for words, and both from your capacity for visual images.

References: 

For more, see the research reports

tags memworks: 

Topics: 

tags problems: 

Menstruation doesn't change how your brain works

  • A largish study for its type indicates that hormonal changes during the menstrual cycle have no impact on working memory, multitasking ability, or cognitive bias.

A study involving 88 women, some of whom had endocrinological disorders, has found that, while some hormones were associated with changes across one menstrual cycle in some of the women taking part, these effects didn't repeat in the following cycle. In other words, there was no consistent effect of hormonal changes on cognition. This is not to say that some individuals might not be consistently affected, just that it doesn’t appear to be a general rule.

While the number of participants isn’t huge, it is considerably larger than is common in these sort of studies. The replication across two cycles is particularly important, since if the researchers had settled for just looking at one cycle, they would have concluded that there was an effect on cognition — as several studies have previously concluded. This more rigorous study suggests that earlier findings should be regarded with caution.

The study followed the women through two menstrual cycles. For the first cycle, 88 women participated; 68 women were re-assessed for a second cycle, to rule out practice effects and false-positive chance findings. Visuospatial working memory, attention, cognitive bias and hormone levels were assessed at four consecutive time-points across both cycles.

Of the initial 88, 58 had no endocrinological problems, 13 were diagnosed with endometriosis, 16 with polycystic ovary syndrome (PCOS) and one woman with hyperprolactinemia. Additionally, 12 women presented with obesity. Women were excluded if they were using oral contraceptives, had been pregnant or breastfeeding within the past 6 months, were using medication or had surgery which might interfere with endocrine parameters, had severe psychiatric or general diseases, worked irregular shifts, had menstrual or ovulation disorders except those investigated in the study, or showed any additional abnormality in hormonal parameters. Mean age was 30. Data from the subset of healthy women were also analyzed separately, confirming no difference in the findings. I would have liked the researchers to mention how the 68 women in the replication were selected, but I assume, after all their emphasis on methodological rigor, that they would have been careful to make sure there was no bias in that selection.

It should be noted, however, that the cognitive testing wasn’t exhaustive by any means — it’s possible that other cognitive aspects might be affected by hormonal changes. However, attention and working memory are the areas generally accused, and most likely to be noticed by an individual.

Of course, that’s the thing about attention and working memory — they’re very sensitive to a host of factors, including sleep quality and stress. So, we often notice that we’re not working at top gear, and we’re likely to look around for reasons. If we’re women, and it’s our period or just before it, we’re quite likely to attribute the reason to that. And it may be true in an indirect way — if we have pain, or sleeplessness, or are stressed, for example. What this study tells us, is that the changes in hormonal levels don't seem to consistently affect cognition.

https://www.eurekalert.org/pub_releases/2017-07/f-mdc062717.php

Reference: 

Source: 

tags memworks: 

Topics: 

tags problems: 

Why we mix up names of people we know well

  • A large survey sheds light on why we have slips of the tongue when we call very familiar people by the wrong name.

We've all done it: used the wrong name when we know the right one perfectly well. And we all know when it's most likely to happen. But here's a study come to reassure us that it's okay, this is just how we roll.

The study, based on five separate surveys of more than 1,700 respondents, finds that these naming errors (when you call someone you know very well by the wrong name) follow a particular pattern that tells us something about how our memory is organized.

Usually the wrong name comes from the same relationship category. So I call one son by the name of the other; on a bad day (e.g. when there's a lot going on, perhaps a lot of people around, and I'm thinking of many other things — say, at Christmas), I might run through both sons, my partner, and my father!

Not just family, you can mix up friends' names too. And the bit that's really enlightening: family members might also be called by the name of the family dog! Interestingly, only the dog; cat owners don't make such slips of the tongue. (Yes, dogs are family; cats not so much.)

Unsurprisingly, phonetic similarity between names is also a factor, although it's less important than relational category. Names with the same beginning or ending sounds, or with shared phonemes (e.g., John and Bob), are more likely to be muddled.

But it's not affected by physical similarity between people — not even by gender (which surprised me, but then, in my household I'm the only female).

More importantly, it's not a function of age. Misnaming errors are common across the board.

http://www.futurity.org/moms-families-dogs-names-1152392/

Reference: 

Source: 

tags memworks: 

Topics: 

tags problems: 

Attention Problems

Older news items (pre-2010) brought over from the old website

Binge drinking affects attention and working memory in young university students

A Spanish study of 95 first-year university students, 42 of them binge drinkers, has found that those who engaged in binge drinking required greater attentional processing during a visual working memory task in order to carry it out correctly. They also had difficulties differentiating between relevant and irrelevant stimuli. Binge drinkers are defined as males who drink five or more standard alcohol drinks, and females who drink four or more, on one occasion and within a two-hour interval. Some 40% of university students in the U.S. are considered binge drinkers.

 [231] Crego A, Holguín SR, Parada M, Mota N, Corral M, Cadaveira F. Binge drinking affects attentional and visual working memory processing in young university students. Alcoholism, Clinical and Experimental Research [Internet]. 2009 ;33(11):1870 - 1879. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19673739

http://www.eurekalert.org/pub_releases/2009-08/ace-bda080509.php

Short stressful events may improve working memory

We know that chronic stress has a detrimental effect on learning and memory, but a new rat study shows how acute stress (a short, sharp event) can produce a beneficial effect. The rats, trained to a level of 60-70% accuracy on a maze, were put through a 20-minute forced swim before being run through the maze again. Those who experienced this stressful event were better at running the maze 4 hours later, and a day later, than those not forced through the stressful event. It appears that the stress hormone corticosterone (cortisol in humans) increases transmission of the neurotransmitter glutamate in the prefrontal cortex and improves working memory. It also appears that chronic stress suppresses the transmission of glutamate in the prefrontal cortex of male rodents, while estrogen receptors in female rodents make them more resilient to chronic stress than male rats.

[1157] Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2009 ;106(33):14075 - 14079. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19666502

http://www.eurekalert.org/pub_releases/2009-07/uab-sse072309.php

When emotions involved, older adults may perform memory tasks better than young adults

A study involving 72 young adults (20-30 years old) and 72 older adults (60-75) has found that regulating emotions – such as reducing negative emotions or inhibiting unwanted thoughts – is a resource-demanding process that disrupts the ability of young adults to simultaneously or subsequently perform tasks, but doesn’t affect older adults. In the study, most of the participants watched a two-minute video designed to induce disgust, while the rest watched a neutral two-minute clip. Participants then played a computer memory game. Before playing 2 further memory games, those who had watched the disgusting video were instructed either to change their negative reaction into positive feelings as quickly as possible or to maintain the intensity of their negative reaction, or given no instructions. Those young adults who had been told to turn their disgust into positive feelings, performed significantly worse on the subsequent memory tasks, but older adults were not affected. The feelings of disgust in themselves did not affect performance in either group. It’s speculated that older adults’ greater experience allows them to regulate their emotions without cognitive effort.

[200] Scheibe S, Blanchard-Fields F. Effects of regulating emotions on cognitive performance: what is costly for young adults is not so costly for older adults. Psychology and Aging [Internet]. 2009 ;24(1):217 - 223. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19290754

http://www.eurekalert.org/pub_releases/2009-03/giot-oac030409.php

Inconsistent processing speed among children with ADHD

A new analytical technique has revealed that the problem with children with ADHD is not so much that they are slower at responding to tasks, but rather that their response is inconsistent. The study of 25 children with ADHD and 24 typically developing peers found that on a task in which a number on one screen needed to be mentally added to another number shown on a second screen, those with ADHD were much less consistent in their response times, although the responses they did give were just as accurate. Higher levels of hyperactivity and restlessness or impulsivity (as measured by parent survey) correlated with more slower reaction times. The finding supports the idea that what underlies impaired working memory is a problem in how consistently a child with ADHD can respond during a working memory task.

[911] Buzy WM, Medoff DR, Schweitzer JB. Intra-Individual Variability Among Children with ADHD - on a Working Memory Task: An Ex-Gaussian Approach. Child Neuropsychology [Internet]. 2009 ;15(5):441 - 441. Available from: http://www.informaworld.com/10.1080/09297040802646991

http://www.eurekalert.org/pub_releases/2009-03/uoc--ips032409.php

Hyperactivity enables children with ADHD to stay alert

A study of 12 8- to 12-year-old boys with ADHD, and 11 of those without, has found that activity levels of those with ADHD increased significantly whenever they had to perform a task that placed demands on their working memory. In a highly stimulating environment where little working memory is required (such as watching a Star Wars video), those with ADHD kept just as still as their normal peers. It’s suggested that movement helps them stay alert enough to complete challenging tasks, and therefore trying to limit their activity (when non-destructive) is counterproductive. Providing written instructions, simplifying multi-step directions, and using poster checklists are all strategies that can be used to help children with ADHD learn without overwhelming their working memories.

[734] Rapport M, Bolden J, Kofler M, Sarver D, Raiker J, Alderson R. Hyperactivity in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): A Ubiquitous Core Symptom or Manifestation of Working Memory Deficits?. Journal of Abnormal Child Psychology [Internet]. 2009 ;37(4):521 - 534. Available from: http://dx.doi.org/10.1007/s10802-008-9287-8

http://www.eurekalert.org/pub_releases/2009-03/uocf-ush030909.php

Poverty can physically impair brain, reducing children's ability to learn

We know that stress affects learning and memory, and there is considerable evidence confirming the commonsense intuition that low-income families are under a lot of stress. Now a long-term study involving 195 children from rural households above and below the poverty line has found that children who lived in impoverished environments for longer periods of time during childhood showed higher stress scores and suffered greater impairments in working memory at 17. Those who spent their entire childhood in poverty scored about 20% lower on working memory tests at 17 than those who were never poor.

[461] Evans GW, Schamberg MA. Childhood poverty, chronic stress, and adult working memory. Proceedings of the National Academy of Sciences [Internet]. 2009 ;106(16):6545 - 6549. Available from: http://www.pnas.org/content/early/2009/03/27/0811910106

Full text available at http://www.pnas.org/content/early/2009/03/27/0811910106.abstract?sid=b4c74b57-a4a5-447b-8675-ba75e69f3ec2
http://www.physorg.com/news158594009.html
http://www.washingtonpost.com/wp-dyn/content/article/2009/04/05/AR2009040501719.html

New research shows why too much memory may be a bad thing

People who are able to easily and accurately recall historical dates or long-ago events may have a harder time with word recall or remembering the day's current events. A mouse study reveals why. Neurogenesis has been thought of as a wholly good thing — having more neurons is surely a good thing — but now a mouse study has found that stopping neurogenesis in the hippocampus improved working memory. Working memory is highly sensitive to interference from information previously stored in memory, so it may be that having too much information may hinder performing everyday working memory tasks.

[635] Saxe MD, Malleret G, Vronskaya S, Mendez I, Garcia DA, Sofroniew MV, Kandel ER, Hen R. Paradoxical influence of hippocampal neurogenesis on working memory. Proceedings of the National Academy of Sciences [Internet]. 2007 ;104(11):4642 - 4646. Available from: http://www.pnas.org/content/104/11/4642.abstract

Full text is available at http://www.pnas.org/cgi/reprint/104/11/4642
http://www.physorg.com/news94384934.html
http://www.sciencedaily.com/releases/2007/03/070329092022.htm
http://www.eurekalert.org/pub_releases/2007-03/cumc-nrs032807.php

Implicit stereotypes and gender identification may affect female math performance

Another study has come out showing that women enrolled in an introductory calculus course who possessed strong implicit gender stereotypes, (for example, automatically associating "male" more than "female" with math ability and math professions) and were likely to identify themselves as feminine, performed worse relative to their female counterparts who did not possess such stereotypes and who were less likely to identify with traditionally female characteristics. Strikingly, a majority of the women participating in the study explicitly expressed disagreement with the idea that men have superior math ability, suggesting that even when consciously disavowing stereotypes, female math students are still susceptible to negative perceptions of their ability.

[969] Kiefer AK, Sekaquaptewa D. Implicit stereotypes, gender identification, and math-related outcomes: a prospective study of female college students. Psychological Science: A Journal of the American Psychological Society / APS [Internet]. 2007 ;18(1):13 - 18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17362371

http://www.eurekalert.org/pub_releases/2007-01/afps-isa012407.php

Reducing the racial achievement gap

And staying with the same theme, a study that came out six months ago, and recently reviewed on the excellent new Scientific American Mind Matters blog, revealed that a single, 15-minute intervention erased almost half the racial achievement gap between African American and white students. The intervention involved writing a brief paragraph about which value, from a list of values, was most important to them and why. The intervention improved subsequent academic performance for some 70% of the African American students, but none of the Caucasians. The study was repeated the following year with the same results. It is thought that the effect of the intervention was to protect against the negative stereotypes regarding the intelligence and academic capabilities of African Americans.

[1082] Cohen GL, Garcia J, Apfel N, Master A. Reducing the Racial Achievement Gap: A Social-Psychological Intervention. Science [Internet]. 2006 ;313(5791):1307 - 1310. Available from: http://www.sciencemag.org/cgi/content/abstract/313/5791/1307

Highly accomplished people more prone to failure than others when under stress

One important difference between those who do well academically and those who don’t is often working memory capacity. Those with a high working memory capacity find it easier to read and understand and reason, than those with a smaller capacity. However, a new study suggests there is a downside. Such people tend to heavily rely on their abundant supply of working memory and are therefore disadvantaged when challenged to solve difficult problems, such as mathematical ones, under pressure — because the distraction caused by stress consumes their working memory. They then fall back on the less accurate short-cuts that people with less adequate supplies of working memory tend to use, such as guessing and estimation. Such methods are not made any worse by working under pressure. In the study involving 100 undergraduates, performance of students with strong working memory declined to the same level as those with more limited working memory, when the students were put under pressure. Those with more limited working memory performed as well under added pressure as they did without the stress.

The findings were presented February 17 at the annual meeting of the American Association for the Advancement of Science.

http://www.eurekalert.org/pub_releases/2007-02/uoc-hap021607.php

Common gene version optimizes thinking but carries a risk

On the same subject, another study has found that the most common version of DARPP-32, a gene that shapes and controls a circuit between the striatum and prefrontal cortex, optimizes information filtering by the prefrontal cortex, thus improving working memory capacity and executive control (and thus, intelligence). However, the same version was also more prevalent among people who developed schizophrenia, suggesting that a beneficial gene variant may translate into a disadvantage if the prefrontal cortex is impaired. In other words, one of the things that make humans more intelligent as a species may also make us more vulnerable to schizophrenia.

[864] Kolachana B, Kleinman JE, Weinberger DR, Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH, Egan MF, et al. Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. Journal of Clinical Investigation [Internet]. 2007 ;117(3):672 - 682. Available from: http://www.jci.org/articles/view/30413?search%5Babstract_text%5D=&search%5Barticle_text%5D=&search%5Bauthors_text%5D=&search%5Bfpage%5D=672&search%5Bissue%5D=&search%5Btitle_text%5D=&search%5Bvolume%5D=117

http://www.sciencedaily.com/releases/2007/02/070208230059.htm
http://www.eurekalert.org/pub_releases/2007-02/niom-cgv020707.php

Anxiety adversely affects those who are most likely to succeed at exams

It has been thought that pressure harms performance on cognitive skills such as mathematical problem-solving by reducing the working memory capacity available for skill execution. However, a new study of 93 students has found that this applies only to those high in working memory. It appears that the advantage of a high working memory capacity disappears when that attention capacity is compromised by anxiety.

[355] Beilock SL, Carr TH. When high-powered people fail: working memory and "choking under pressure" in math. Psychological Science: A Journal of the American Psychological Society / APS [Internet]. 2005 ;16(2):101 - 105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15686575

http://www.eurekalert.org/pub_releases/2005-02/bpl-wup020705.php

Memory-enhancing drugs for elderly may impair working memory and other executive functions

Drugs that increase the activity of an enzyme called protein kinase A improve long-term memory in aged mice and have been proposed as memory-enhancing drugs for elderly humans. However, the type of memory improved by this activity occurs principally in the hippocampus. A new study suggests that increased activity of this enzyme has a deleterious effect on working memory (which principally involves the prefrontal cortex). In other words, a drug that helps you remember a recent event may worsen your ability to remember what you’re about to do (to take an example).

[1404] Ramos BP, Birnbaum SG, Lindenmayer I, Newton SS, Duman RS, Arnsten AFT. Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron [Internet]. 2003 ;40(4):835 - 845. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14622586

http://www.eurekalert.org/pub_releases/2003-11/naos-mdf110303.php

Sleep deprivation affects working memory

A recent study investigated the working memory capacities of individuals who were sleep-deprived. For nine days, 7 of the 12 participants slept four hours each night, and 5 slept for eight hours. Each morning, participants completed a computer task to measure how quickly they could access a list of numbers they had been asked to memorize. The list could be one, three, or five items long. Then participants were presented with a series of single digits and asked to answer "yes" or "no" to indicate whether each digit was one they had memorized. Those who slept eight hours a night steadily increased their working memory efficiency on this task, but those who slept only four hours a night failed to show any improvement in memory efficiency. Motor skill did not change across days for either group of participants.

The findings were presented at the Society for Neuroscience 2003 annual  conference.

http://www.eurekalert.org/pub_releases/2003-11/sfn-sfb_1111003.php

Cognitive impairment following bypass surgery may last longer than thought

More support for a link between cardiopulmonary bypass surgery and cognitive impairment comes from a new study. In particular, it seems, that attention may be most affected. The study also found evidence of longer-lasting cognitive decline than previously thought. Bypass patients also demonstrated poorer cognitive performance before the surgery, and it is now being suggested that it may be the disease itself that is the major problem, rather than the surgery itself. This is consistent with recent research connecting cardiovascular risk factors with risk factors for cognitive decline.

[716] Keith JR, Puente AE, Malcolmson KL, Tartt S, Coleman AE, Marks HF. Assessing postoperative cognitive change after cardiopulmonary bypass surgery. Neuropsychology [Internet]. 2002 ;16(3):411 - 421. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12146688

http://www.eurekalert.org/pub_releases/2002-07/apa-lci070802.php

Cocaine may permanently damage learning abilities in developing fetuses

Two recent studies investigating the effect of pre-natal exposure to cocaine in rats suggest that children exposed to cocaine while in the womb may have permanent changes to the part of the brain that helps control attention and memory, leading to learning deficits and symptoms that are very much like attention deficit hyperactivity disorder.

[1270] Morrow BA, Elsworth JD, Roth RH. Male rats exposed to cocaine in utero demonstrate elevated expression of Fos in the prefrontal cortex in response to environment. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology [Internet]. 2002 ;26(3):275 - 285. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11850142

[264] Morrow BA, Elsworth JD, Roth RH. Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats. Behavioural Brain Research [Internet]. 2002 ;129(1-2):217 - 223. Available from: http://www.sciencedirect.com/science/article/B6SYP-44Y08TP-X/2/053aad67fb4b07c0b8909206a6155b08

http://www.eurekalert.org/pub_releases/2002-02/yu-ucd021802.php

tags problems: 

Forgetfulness in old age may be related to changes in retrieval strategy

April, 2013

A study of younger and older adults indicates that memory search tends to decline with age because, with reduced cognitive control, seniors’ minds tend to ‘flit’ too quickly from one information cluster to another.

Evidence is accumulating that age-related cognitive decline is rooted in three related factors: processing speed slows down (because of myelin degradation); the ability to inhibit distractions becomes impaired; working memory capacity is reduced.

A new study adds to this evidence by looking at one particular aspect of age-related cognitive decline: memory search.

The study put 185 adults aged 29-99 (average age 67) through three cognitive tests: a vocabulary test, digit span (a working memory test), and the animal fluency test, in which you name as many animals as you can in one minute.

Typically, in the animal fluency test, people move through semantic categories such as ‘pets’, ‘big cats’, and so on. The best performers are those who move from category to category with optimal timing — i.e., at the point where the category has been sufficiently exhausted that efforts would be better spent on a new one.

Participants recalled on average 17 animal names, with a range from 5 to 33. While there was a decline with age, it wasn’t particularly marked until the 80s (an average of 18.3 for those in their 30s, 17.5 for those in their 60s, 16.5 for the 70s, 12.8 for the 80s, and 10 for the 90s). Digit span did show a decline, but it was not significant (from 17.5 down to 15.3), while vocabulary (consistent with previous research) showed no decline with age.

But all this is by the by — the nub of the experiment was to discover how individuals were searching their memory. This required a quite complicated analysis, which I will not go into, except to mention two important distinctions. The first is between:

  • global context cue: activates each item in the active category according to how strong it is (how frequently it has been recalled in the past);
  • local context cue: activates each item in relation to its semantic similarity to the previous item recalled.

A further distinction was made between static and dynamic processes: in dynamic models, it is assumed the user switches between local and global search. This, it is further assumed, is because memory is ‘patchy’ – that is, information is represented in clusters. Within a cluster, we use local cues, but to move from one cluster to another, we use global cues.

The point of all this was to determine whether age-related decline in memory search has to do with:

  • Reduced processing speed,
  • Persisting too long on categories, or
  • Inability to maintain focus on local cues (this would relate it back to the inhibition deficit).

By modeling the exact recall patterns, the researchers ascertained that the recall process is indeed dynamic, although the points of transition are not clearly understood. The number of transitions from one cluster to another was negatively correlated with age; it was also strongly positively correlated with performance (number of items recalled). Digit span, assumed to measure ‘cognitive control’, was also negatively correlated with number of transitions, but, as I said, was not significantly correlated with age.

In other words, it appears that there is a qualitative change with age, that increasing age is correlated with increased switching, and reduced cognitive control is behind this — although it doesn’t explain it all (perhaps because we’re still not able to fully measure cognitive control).

At a practical level, the message is that memory search may become less efficient because, as people age, they tend to change categories too frequently, before they have exhausted their full potential. While this may well be a consequence of reduced cognitive control, it seems likely (to me at least) that making a deliberate effort to fight the tendency to move on too quickly will pay dividends for older adults who want to improve their memory retrieval abilities.

Nor is this restricted to older adults — since age appears to be primarily affecting performance through its effects on cognitive control, it is likely that this applies to those with reduced working memory capacity, of any age.

Reference: 

[3378] Hills TT, Mata R, Wilke A, Samanez-Larkin GR. Mechanisms of Age-Related Decline in Memory Search Across the Adult Life Span. Developmental Psychology. 2013 :No - Pagination Specified.

Source: 

tags development: 

Topics: 

tags problems: 

tags memworks: 

Interactive robot trains kids with autism

A humanoid robot has been designed, and shows promise, for teaching joint attention to children with ASD. Robots are particularly appealing to children, and even more so to those with ASD.

http://www.futurity.org/health-medicine/interactive-robot-trains-kids-with-autism/

04/2013

Mynd: 

tags problems: 

tags development: 

Frequent multitaskers are the worst at it

March, 2013

A survey of college students found that those who scored highest in multitasking ability were also least likely to multitask, while those who scored lowest were most likely to engage in it.

I’ve reported often on the perils of multitasking. Here is yet another one, with an intriguing new finding: it seems that the people who multitask the most are those least capable of doing so!

The study surveyed 310 undergraduate psychology students to find their actual multitasking ability, perceived multitasking ability, cell phone use while driving, use of a wide array of electronic media, and personality traits such as impulsivity and sensation-seeking.

Those who scored in the top quarter on a test of multitasking ability tended not to multitask. Some 70% of participants thought they were above average at multitasking, and perceived multitasking ability (rather than actual) was associated with multitasking. Those with high levels of impulsivity and sensation-seeking were also more likely to multitask (with the exception of using a cellphone while driving, which wasn’t related to impulsivity, though it was related to sensation seeking).

The findings suggest that those who multitask don’t do so because they are good at multitasking, but because they are poor at focusing on one task.

Reference: 

Source: 

tags development: 

Topics: 

tags memworks: 

tags problems: 

tags: 

How urban living affects attention

February, 2013

A comparison of traditional African villagers and those who have moved to town indicates that urban living improves working memory capacity even as it makes us more vulnerable to distraction.

Another study looking into the urban-nature effect issue takes a different tack than those I’ve previously reported on, that look at the attention-refreshing benefits of natural environments.

In this study, a rural African people living in a traditional village were compared with those who had moved to town. Participants in the first experiment included 35 adult traditional Himba, 38 adolescent traditional Himba (mean age 12), 56 adult urbanized Himba, and 37 adolescent urbanized Himba. All traditional Himba had had little contact with the Western world and only spoke their native language; all adult urbanized Himba had grown up in traditional villages and only moved to town later in life (average length of time in town was 6 years); all adolescent urbanized Himba had grown up in town the town and usually attended school regularly.

The first experiments assessed the ability to ignore peripheral distracting arrows while focusing on the right or left direction of a central arrow.

There was a significant effect of urbanization, with attention being more focused (less distracted) among the traditional Himba. Traditional Himba were also slower than urbanized Himba — but note that there was substantial overlap in response times between the two groups. There was no significant effect of age (that is, adolescents were faster than adults in their responses, but the effect of the distracters was the same across age groups), or a significant interaction between age and urbanization.

The really noteworthy part of this, was that the urbanization effect on task performance was the same for the adults who had moved to town only a few years earlier as for the adolescents who had grown up and been educated in the town. In other words, this does not appear to be an educational effect.

The second experiment looked at whether traditional Himba would perform more like urbanized Himba if there were other demands on working memory. This was done by requiring them to remember three numbers (the number words in participants’ language are around twice as long as the same numbers in English, hence their digit span is shorter).

While traditional Himba were again more focused than the urbanized in the no-load condition, when there was this extra load on working memory, there was no significant difference between the two groups. Indeed, attention was de-focused in the traditional Himba under high load to the same degree as it was for urbanized Himba under no-load conditions. Note that increasing the cognitive load made no difference for the urbanized group.

There was also a significant (though not dramatic) difference between the traditional and urbanized Himba in terms of performance on the working memory task, with traditional Himba remembering an average of 2.46/3 digits and urbanized Himba 2.64.

Experiment 3 tested the two groups on a working memory task, a standard digit span test (although, of course, in their native language). Random sequences of 2-5 digits were read out, with the participant being required to say them aloud immediately after. Once again, the urbanized Himba performed better than the traditional Himba (4.32 vs 3.05).

In other words, the problem does not seem to be that urbanization depletes working memory, rather, that urbanization encourages disengagement (i.e., we have the capacity, we just don’t use it).

In the fourth experiment, this idea was tested more directly. Rather than the arrows used in the earlier experiments, black and white faces were used, with participants required to determine the color of the central face. Additionally, inverted faces were sometimes used (faces are stimuli we pay a lot of attention to, but inverting them reduces their ‘faceness’, thus making them less interesting).

An additional group of Londoners was also included in this experiment.

While urbanized Himba and Londoners were, again, more de-focused than traditional Himba when the faces were inverted, for the ‘normal’ faces, all three groups were equally focused.

Note that the traditional Himba were not affected by the changes in the faces, being equally focused regardless of the stimulus. It was the urbanized groups that became more alert when the stimuli became more interesting.

Because it may have been a race-discrimination mechanism coming into play, the final experiment returned to the direction judgment, with faces either facing left or right. This time the usual results occurred – the urbanized groups were more de-focused than the traditional group.

In other words, just having faces was not enough; it was indeed the racial discrimination that engaged the urbanized participants (note that both these urban groups come from societies where racial judgments are very salient – multicultural London, and post-apartheid Namibia).

All of this indicates that the attention difficulties that appear so common nowadays are less because our complex environments are ‘sapping’ our attentional capacities, and more because we are in a different attentional ‘mode’. It makes sense that in environments that contain so many more competing stimuli, we should employ a different pattern of engagement, keeping a wider, more spread, awareness on the environment, and only truly focusing when something triggers our interest.

Reference: 

[3273] Linnell KJ, Caparos S, de Fockert JW, Davidoff J. Urbanization Decreases Attentional Engagement. Journal of experimental psychology. Human perception and performance. 2013 .

Source: 

tags lifestyle: 

Topics: 

tags memworks: 

tags problems: 

tags: 

Pages

Subscribe to RSS - attention problems