Aging

Hearing aid use linked to better cognition in hearing-impaired elderly

  • A study of older adults with impaired hearing supports the use of hearing aids to help fight the development of cognitive decline and dementia.

A study involving 100 older adults (aged 80-99) with hearing loss has found that those who used a hearing aid performed significantly better on a cognitive test (MMSE) than those who didn't use a hearing aid, despite having poorer hearing. Among non-users, participants with more hearing loss had lower MMSE scores than those with better hearing.

In the MMSE, participants give vocal responses to verbal commands. Executive function was also assessed with the Trail Making Test, Part B, which doesn't have a verbal or auditory component. On this test, although hearing aid users performed better than non-users, the difference was not statistically significant. Nor were scores correlated with hearing level.

The finding suggests that hearing loss is associated with sensory-specific cognitive decline rather than global cognitive impairment.

Of the 100 participants, 34 regularly used a hearing aid.

Previous studies have found hearing loss is associated with greater cognitive decline in older adults. A physician recently told the annual meeting of the American Association for the Advancement of Science (AAAS) that as much as 36% of dementia risk might be attributable to hearing impairment, and urged that doctors treat age-related hearing impairment more seriously.

The finding supports the view that use of hearing aids for the hearing impaired may help keep them more socially engaged, thus preventing or slowing the progression of cognitive decline and the development of dementia.

More than half of adults over age 75 have hearing loss, yet less than 15% of the hearing impaired use a hearing aid.

http://www.eurekalert.org/pub_releases/2016-04/cumc-hau042216.php

Reference: 

Source: 

tags development: 

Topics: 

tags problems: 

Physical activity linked to better memory for names and faces among older adults

  • A small study adds to evidence that walking improves memory in older adults, and indicates that this is particularly helpful for memory tasks the seniors find challenging.

A small study that fitted 29 young adults (18-31) and 31 older adults (55-82) with a device that recorded steps taken and the vigor and speed with which they were made, has found that those older adults with a higher step rate performed better on memory tasks than those who were more sedentary. There was no such effect seen among the younger adults.

Improved memory was found for both visual and episodic memory, and was strongest with the episodic memory task. This required recalling which name went with a person's face — an everyday task that older adults often have difficulty with.

However, the effect on visual memory had more to do with time spent sedentary than step rate. With the face-name task, both time spent sedentary and step rate were significant factors, and both factors had a greater effect than they had on visual memory.

Depression and hypertension were both adjusted for in the analysis.

There was no significant difference in executive function related to physical activity, although previous studies have found an effect. Less surprisingly, there was also no significant effect on verbal memory.

Both findings might be explained in terms of cognitive demand. The evidence suggests that the effect of physical exercise is only seen when the task is sufficiently cognitively demanding. No surprise that verbal memory (which tends to be much less affected by age) didn't meet that challenge, but interestingly, the older adults in this study were also less impaired on executive function than on visual memory. This is unusual, and reminds us that, especially with small studies, you cannot ignore the individual differences.

This general principle may also account for the lack of effect among younger adults. It is interesting to speculate whether physical activity effects would be found if the younger adults were given much more challenging tasks (either by increasing their difficulty, or selecting a group who were less capable).

Step Rate was calculated by total steps taken divided by the total minutes in light, moderate, and vigorous activities, based on the notion that this would provide an independent indicator of physical activity intensity (how briskly one is walking). Sedentary Time was the total minutes spent sedentary.

http://www.eurekalert.org/pub_releases/2015-11/bumc-slp112415.php

Reference: 

[4045] Hayes SM, Alosco ML, Hayes JP, Cadden M, Peterson KM, Allsup K, Forman DE, Sperling RA, Verfaellie M. Physical Activity Is Positively Associated with Episodic Memory in Aging. Journal of the International Neuropsychological Society [Internet]. 2015 ;21(Special Issue 10):780 - 790. Available from: http://journals.cambridge.org/article_S1355617715000910

Source: 

tags development: 

tags memworks: 

Topics: 

tags lifestyle: 

Mentally challenging activities key to a healthy aging mind

  • A small study shows significant changes in brain activity among older adults engaged in learning a cognitively demanding skill.

A study involving 39 older adults has found that those randomly assigned to a “high-challenge” group showed improved cognitive performance and more efficient brain activity compared with those assigned to a low-challenge group, or a control group.

The high-challenge group spent at least 15 hours a week for 14 weeks learning progressively more difficult skills in digital photography, quilting, or a combination of both. The low-challenge group met to socialize and engage in activities related to subjects such as travel and cooking. The placebo group engaged in low-demand cognitive tasks such as listening to music, playing simple games, or watching classic movies.

The high-challenge group demonstrated increased neural efficiency in judging words, shown by lowered brain activity when word judgments were easy and increasing activity when they became hard. This is a pattern of response typical of young adults, and was not seen in them before the intervention, or among those in the other groups. To some extent, these changes were still seen a year later.

Moreover, there was a dose-dependent effect — meaning, those who spent more time engaging in the high-challenge activities showed the greatest brain changes.

So did those who were oldest, perhaps because their brains were most in need, perhaps because they were the most disengaged. Most likely, perhaps, because both of these were true.

The bottom line, though, is that, while all mental stimulation is good in terms of building cognitive reserve, actively learning, and really pushing yourself, is what you need to get to, or keep at, the top of your game.

http://www.eurekalert.org/pub_releases/2016-01/ip-mca011516.php

http://content.iospress.com/articles/restorative-neurology-and-neuroscience/rnn150533

Reference: 

Source: 

tags development: 

Topics: 

tags strategies: 

Some cognitive training helps less-educated older adults more

  • A large study in which older adults underwent various types of cognitive training has found that less-educated adults benefited more from training designed to speed processing.

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

While the effects of reasoning and memory training did not differ as a function of how much education the individual had, those older adults with less than a complete high school education experienced a 50% greater benefit from speed of information processing training than college graduates. This advantage was maintained for three years after the end of the training.

The training involved ten 60 to 75-minute sessions over six weeks that focused on visual search and processing information in shorter and shorter times.

Both reasoning and information processing speed training resulted in improved targeted cognitive abilities for 10 years among participants, but memory training did not. Memory training focused on mnemonic strategies for remembering lists and sequences of items, text material, and main ideas and details of stories and other text-based information. Reasoning training focused on improving the ability to solve problems containing a serial pattern.

The researchers speculate that speed of information processing training might help those with less than 12 years of education, who are at greater risk of dementia, close the gap between them and those with more education.

The training modules have been translated into online games delivered by Posit Science.

Less educated study participants were slightly older, less likely to be married, more likely to be African-American, and more likely to have hypertension or diabetes as well as heart disease than the more educated older adults.

http://www.eurekalert.org/pub_releases/2016-01/iu-irs012816.php

Reference: 

Source: 

tags development: 

Topics: 

tags strategies: 

Omega 3 levels affect whether B vitamins can slow brain's decline

  • B vitamins can help many older adults with mild cognitive impairment, but only if they have good levels of omega-3 fatty acids.

A study involving 266 people with mild cognitive impairment (aged 70+) has found that B vitamins are more effective in slowing cognitive decline when people have higher omega 3 levels.

Participants were randomly selected to receive either a B-vitamin supplement (folic acid, vitamins B6 and B12) or a placebo pill for two years. The vitamins had little to no effect for those with low levels of omega-3 fatty acids, but were very effective for those with high baseline omega-3 levels.

Levels of DHA appeared to be more important than levels of EPA, but more research is needed to confirm that.

The finding may help to explain why research looking at the effects of B vitamins, or the effects of omega-3 oils, have produced inconsistent findings.

The study followed research showing that B vitamins can slow or prevent brain atrophy and memory decline in people with MCI, and they were most effective in those who had above average blood levels of homocysteine.

http://www.eurekalert.org/pub_releases/2016-01/uoo-ola011916.php

Reference: 

Source: 

tags development: 

tags problems: 

Topics: 

tags lifestyle: 

Some chronic viral infections could contribute to age-related cognitive decline

  • A longitudinal study confirms findings from cross-sectional studies that certain common viral infections are factors in age-related cognitive decline.

Growing research has implicated infections as a factor in age-related cognitive decline, but these have been cross-sectional (comparing different individuals, who will have a number of other, possibly confounding, attributes). Now a large longitudinal study provides more evidence that certain chronic viral infections could contribute to subtle cognitive deterioration in apparently healthy older adults.

The study involved 1,022 older adults (65+), who had annual evaluations for five years. It revealed an association between cognitive decline and exposure to several viruses: cytomegalovirus (CMV), herpes simplex (HSV 2), and the protozoa Toxoplasma gondii.

More specifically, the IgG levels for HSV-2 were significantly associated with baseline cognitive scores, while the IgG levels for HSV-2 (genital herpes), TOX (which has been much in the news in recent years for being harbored in domestic cats, and being implicated in various neurological disorders), and CMV (a common virus which unfortunately rarely causes symptoms), but not HSV-1 (the cold sore virus), were significantly associated with greater temporal cognitive decline that varied by type of infection.

More research is obviously needed to determine more precisely what the role of different infectious agents is in cognitive decline, but the findings do point to a need for a greater emphasis on preventing and treating infections. They also add to the growing evidence that age-related cognitive decline isn't 'normal', but something that occurs when other health-related factors come into play.

http://www.eurekalert.org/pub_releases/2016-02/uops-scv020416.php

Reference: 

tags development: 

Topics: 

tags problems: 

Mediterranean diet reduces brain shrinkage in old age

  • The Mediterranean diet is the diet most associated with cognitive and health benefits in older adults.
  • A new study has found larger brain volumes among those following this sort of diet, equivalent to that of brains five years younger.
  • Much of this was associated with two components of the diet in particular: eating fish regularly, and eating less meat.

Another study adds to the growing evidence that a Mediterranean diet is good for the aging brain.

The New York study used data from 674 non-demented older adults (average age 80). It found that those who closely followed such a diet showed significantly less brain shrinkage. Specifically, total brain volume was an average 13.11 milliliters greater, with grey matter volume 5 millilitres greater, and white matter 6.4 millilitres greater.

Eating at least five of the recommended Mediterranean diet components was associated with benefits equivalent to five years of age. By far the most important of these components was regular fish and reduced meat intake — at least 3 to 5 ounces of fish weekly; no more than 3.5 ounces of meat daily.

This is consistent with a considerable amount of research indicating the benefits of fish in fighting age-related cognitive decline.

http://www.theguardian.com/lifeandstyle/2015/oct/21/mediterranean-diet-may-slow-the-ageing-process-by-five-years

Reference: 

tags development: 

Topics: 

tags lifestyle: 

Low vitamin D speeds age-related cognitive decline

  • On average, older adults with low levels of vitamin D showed much faster decline in episodic memory and executive function.
  • Older adults with dementia had significantly lower levels of vitamin D compared to those with MCI or normal cognition.
  • Low vitamin D was more common in African-Americans and Hispanics, compared to whites.

A study involving 382 older adults (average age 75) followed for around five years, has found that those who don’t get enough vitamin D may experience cognitive decline at a much faster rate than people who have adequate vitamin D.

Participants included 17.5% with dementia at the beginning of the study, 32.7% with MCI, and 49.5% cognitively healthy.

Those with dementia had lower levels of vitamin D than the other two groups.

While some people with low vitamin D didn’t show any cognitive decline and some with adequate vitamin D declined quickly, people with low vitamin D on average declined two to three times as fast as those with adequate vitamin D, in two crucial cognitive domains: episodic memory and executive function. Semantic memory and visuospatial ability were not significantly affected.

Factors such as age, gender, education, BMI, season of blood draw, vascular risk, and presence of the 'Alzheimer's gene', ApoE4, were controlled for.

Unlike previous studies of vitamin D and dementia, the participants were racially and ethnically diverse and included whites (41%), African Americans (30%), and Hispanics (25%). Nearly two-thirds (61%) had low vitamin D levels in their blood, including 54% of the whites and 70% of the African-Americans and Hispanics.

Vitamin D is primarily obtained through sun exposure. Accordingly, people with darker skin are more likely to have low levels of vitamin D because melanin blocks ultra-violet rays.

It remains to be seen whether Vitamin D supplements could slow cognitive decline.

http://www.futurity.org/vitamin-d-cognitive-decline-1003932/

 

Reference: 

tags development: 

Topics: 

tags lifestyle: 

Movie study confirms older people are more distractible

Idiosyncratic brain activity among older people watching a thriller-type movie adds to evidence that:

  • age may affect the ability to perceive and remember the order of events (explaining why older adults may find it harder to follow complex plots)
  • age affects the ability to focus attention and not be distracted
  • age affects the brain's connectivity — how well connected regions work together.

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).

While many studies have looked at how age changes brain function, the stimuli used have typically been quite simple. This thriller-type story provides more complex and naturalistic stimuli.

Younger adults' brains responded to the TV program in a very uniform way, while older adults showed much more idiosyncratic responses. The TV program (“Bang! You're dead”) has previously been shown to induce widespread synchronization of brain responses (such movies are, after all, designed to focus attention on specific people and objects; following along with the director is, in a manner of speaking, how we follow the plot). The synchronization seen here among younger adults may reflect the optimal response, attention focused on the most relevant stimulus. (There is much less synchronization when the stimuli are more everyday.)

The increasing asynchronization with age seen here has previously been linked to poorer comprehension and memory. In this study, there was a correlation between synchronization and measures of attentional control, such as fluid intelligence and reaction time variability. There was no correlation between synchronization and crystallized intelligence.

The greatest differences were seen in the brain regions controlling attention (the superior frontal lobe and the intraparietal sulcus) and language processing (the bilateral middle temporal gyrus and left inferior frontal gyrus).

The researchers accordingly suggested that the reason for the variability in brain patterns seen in older adults lies in their poorer attentional control — specifically, their top-down control (ability to focus) rather than bottom-up attentional capture. Attentional capture has previously been shown to be well preserved in old age.

Of course, it's not necessarily bad that a watcher doesn't rigidly follow the director's manipulation! The older adults may be showing more informed and cunning observation than the younger adults. However, previous studies have found that older adults watching a movie tend to vary more in where they draw an event boundary; those showing most variability in this regard were the least able to remember the sequence of events.

The current findings therefore support the idea that older adults may have increasing difficulty in understanding events — somthing which helps explain why some old people have increasing trouble following complex plots.

The findings also add to growing evidence that age affects functional connectivity (how well the brain works together).

It should be noted, however, that it is possible that there could also be cohort effects going on — that is, effects of education and life experience.

http://www.eurekalert.org/pub_releases/2015-08/uoc-ymt081415.php

Reference: 

Topics: 

tags problems: 

tags development: 

tags memworks: 

Physical activity linked to greater mental flexibility in older adults

  • A correlation has been found between physical activity in healthy older adults and more variable resting-state brain activity.
  • More variable resting-state activity in older adults has previously been linked to better cognition.
  • No such correlation was found between cardiorespiratory fitness and resting-state brain activity.
  • The finding supports previous evidence linking higher levels of physical activity in old age with better cognition and brain health.

A study involving 100 healthy older adults (aged 60-80) has found that those with higher levels of physical activity showed more variable spontaneous brain activity in certain brain regions (including the precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices). Moreover, this relationship was positively associated with better white-matter structure.

Higher rates of activity when the brain is “at rest” have previously been shown to be associated with better cognitive performance in older adults, especially in IQ and memory.

The brain regions showing this relationship all play an important role in major resting-state networks, including the default mode network, the motor network, and networks associated with executive control and salience detection. They are all highly connected.

Participants' physical activity over a week was measured using accelerometers. Cardiorespiratory fitness was also assessed. Participants were generally not very active and not very fit.

The findings add to evidence linking higher fitness and physical activity with greater brain integrity and higher cognitive performance. They are also consistent with previous studies showing an increase in such brain signal fluctuations among older adults participating in physical exercise programs.

Interestingly, level of brain activity fluctuations was only correlated with physical activity, not with cardiorespiratory fitness. This indicates that CRF and physical exercise cannot be considered as functional equivalents — there must be some aspects of physical activity not captured by a measure of cardiorespiratory fitness.

It's also worth noting that there wasn't a significant correlation between sedentary time and resting-state brain activity fluctuations, although this may be because the participants all showed not-very-dissimilar levels of sedentary time.

http://www.eurekalert.org/pub_releases/2015-08/uoia-slp082415.php

Reference: 

Burzynska AZ, Wong CN, Voss MW, Cooke GE, Gothe NP, Fanning J, et al. (2015) Physical Activity Is Linked to Greater Moment-To-Moment Variability in Spontaneous Brain Activity in Older Adults. PLoS ONE 10(8): e0134819. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134819

tags development: 

Topics: 

tags lifestyle: 

Pages

Subscribe to RSS - Aging