reading

Novices' problems with scientific text

This is the last part in my series on understanding scientific text. In this part, as promised, I am going to talk about the difficulties novices have with scientific texts; what they or their teachers can do about it; and the problems with introductory textbooks.

The big problem for novices is of course that their lack of knowledge doesn’t allow them to make the inferences they need to repair the coherence gaps typically found in such texts. This obviously makes it difficult to construct an adequate situation model. Remember, too, that to achieve integration of two bits of information, you need to have both bits active in working memory at the same time. This, clearly, is more difficult for those for whom all the information is unfamiliar (remember what I said about long-term working memory last month).

But it’s not only a matter a matter of having knowledge of the topic itself. A good reader can compensate for their lack of relevant topic knowledge using their knowledge about the structure of the text genre. For this, the reader needs not only to have knowledge of the various kinds of expository structures, but also of the cues in the text that indicate what type of structure it is. (see my article on Reading scientific text for more on this).

One of the most effective ways of bringing different bits of information together is through the asking of appropriate questions. Searching a text in order to answer questions, for example, is an effective means of improving learning. Answering questions is also an effective means of improving comprehension monitoring (remember that one of the big problems with reading scientific texts is that students tend to be poor at judging how well they have understood what was said).

One of the reasons why children typically have pronounced deficits in their comprehension monitoring skills when dealing with expository texts, is that they have little awareness that expository texts require different explanations than narrative texts. However, these are trainable skills. One study, for example, found that children aged 10-12 could be successfully taught to use “memory questions” and “thinking questions” while studying expository texts.

Moreover, the 1994 study found that when the students were trained to ask questions intended to access prior knowledge/experience and promote connections between the lesson and that knowledge, as well as questions designed to promote connections among the ideas in the lesson, their learning and understanding was better than if they were trained only in questions aimed at promoting connections between the lesson ideas only (or if they weren’t trained in asking questions at all!). In other words, making explicit connections to existing knowledge is really important! You shouldn’t just be content to consider a topic in isolation; it needs to be fitted into your existing framework.

College students, too, demonstrate limited comprehension monitoring, with little of their self-questioning going deeply into the material. So it may be helpful to note Baker’s 7 comprehension aspects that require monitoring:

  1. Your understanding of the individual words
  2. Your understanding of the syntax of groups of words
  3. External consistency — how well the information in the text agrees with the knowledge you already have
  4. Internal consistency — how well the information in the text agrees with the other information in the text
  5. Propositional cohesiveness — making the connections between adjacent propositions
  6. Structural cohesiveness —integrating all the propositions pertaining to the main theme
  7. Information completeness — how clear and complete the information in the text is

Think of this as a checklist, for analyzing your (or your students’) understanding of the text.

But questions are not always the answer. The problem for undergraduates is that although introductory texts are presumably designed for novices, the students often have to deal not only with unfamiliar content, but also an approach that is unfamiliar. Such a situation may not be the best context for effective familiar strategies such as self-explanation.

It may be that self-explanation is best for texts that in the middle-range for the reader — neither having too little relevant knowledge, or too much.

Introductory texts also are likely to provide only partial explanations of concepts, a problem made worse by the fact that the novice student is unlikely to realize the extent of the incompleteness. Introductory texts also suffer from diffuse goals, an uneasy mix of establishing a basic grounding for more advanced study, and providing the material necessary to pass immediate exams.

A study of scientific text processing by university students in a natural situation found that the students didn’t show any deep processing, but rather two kinds of shallow processing, produced by either using their (limited knowledge of) expository structures, or by representing the information in the text more precisely.

So should beginning students be told to study texts more deeply? The researchers of this study didn’t think so. Because introductory texts suffer from these problems I’ve mentioned, in particular that of incomplete explanations, they don’t lend themselves to deep processing. The researchers suggest that what introductory texts are good for is in providing the extensive practice needed for building up knowledge of expository structures (and hopefully some necessary background knowledge of the topic! Especially technical language).

To that end, they suggest students should be advised to perform a variety of activities on the text that will help them develop their awareness of the balance between schema and textbase, with the aim of developing a large repertory of general and domain-specific schemata. Such activities / strategies include taking notes, rereading, using advance organizers, and generating study questions. This will all help with their later construction of good mental models, which are so crucial for proper understanding.

References: 
  • Baker, L. 1985. Differences in the standards used by college students to evaluate their comprehension of expository prose. Reading Research Quarterly, 20 (3), 297-313.
  • Elshout-Mohr, M. & van Daalen-Kapteijns, M. 2002. Situated regulation of scientific text processing. In Otero, J., León, J.A. & Graesser, A.C. (eds). The psychology of science text comprehension. Pp 223-252. Mahwah, NJ: LEA.
  • King, A. 1994. Guiding Knowledge Construction in the Classroom: Effects of Teaching Children How to Question and How to Explain. American Educational Research Journal, 31 (2), 338-368.

Understanding scientific text

In the last part I talked about retrieval structures and their role in understanding what you’re reading. As promised, this month I’m going to focus on understanding scientific text in particular, and how it differs from narrative text.

First of all, a reminder about situation models. A situation, or mental, model is a retrieval structure you construct from a text, integrating the information in the text with your existing knowledge. Your understanding of a text depends on its coherence; it’s generally agreed that for a text to be coherent it must be possible for a single situation model to be constructed from it (which is not to say a text that is coherent is necessarily coherent for you —that will depend on whether or not you can construct a single mental model from it).

There are important differences in the situation models constructed for narrative and expository text. A situation model for a narrative is likely to refer to the characters in it and their emotional states, the setting, the action and sequence of events. A situation model for a scientific text, on the other hand, is likely to concentrate on the components of a system and their relationships, the events and processes that occur during the working of the system, and the uses of the system.

Moreover, scientific discourse is rooted in an understanding of cause-and-effect that differs from our everyday understanding. Our everyday understanding, which is reflected in narrative text, sees cause-and-effect in terms of goal structures. This is indeed the root of our superstitious behavior — we (not necessarily consciously) attribute purposefulness to almost everything! But this approach is something we have to learn not to apply to scientific problems (and it requires a lot of learning!).

This is worth emphasizing: science texts assume a different way of explaining events from the way we are accustomed to use — a way that must be learned.

In general, then, narrative text (and ‘ordinary’ thinking) is associated with goal structures, and scientific text with logical structures. However, it’s not quite as clear-cut a distinction as all that. While the physical sciences certainly focus on logical structure, both the biological sciences and technology often use goal structures to frame their discussions. Nevertheless, as a generalization we may say that logical thinking informs experts in these areas, while goal structures are what novices focus on.

This is consistent with another intriguing finding. In a comparison of two types of text —ones discussing human technology, and ones discussing forces of nature — it was found that technological texts were more easily processed and remembered. Indications were that different situation models were constructed — a goal-oriented representation for the technological text, and a causal chain representation for the force of nature text. The evidence also suggested that people found it much easier to make inferences (whether about agents or objects) when human agents were involved. Having objects as the grammatical subject was clearly more difficult to process.

Construction of the situation model is thus not solely determined by comprehension difficulty (which was the same for both types of text), but is also affected by genre and surface characteristics of the text.

There are several reasons why goal-oriented, human-focused discourse might be more easily processed (understood; remembered) than texts describing inanimate objects linked in a cause-effect chain, and they come down to the degree of similarity to narrative. As a rule of thumb, we may say that to the degree that scientific text resembles a story, the more easily it will be processed.

Whether that is solely a function of familiarity, or reflects something deeper, is still a matter of debate.

Inference making is crucial to comprehension and the construction of a situation, because a text never explains every single word and detail, every logical or causal connection. In the same way that narrative and expository text have different situation models, they also involve a different pattern of inference making. For example, narratives involve a lot of predictive inferences; expository texts typically involve a lot of backward inferences. The number of inferences required may also vary.

One study found that readers made nine times as many inferences in stories as they did in expository texts. This may be because there are more inferences required in narratives — narratives involve the richly complex world of human beings, as opposed to some rigidly specified aspect of it, described according to a strict protocol. But it may also reflect the fact that readers don’t make all (or indeed, anywhere near) the inferences needed in expository text. And indeed, the evidence indicates that students are poor at noticing coherence gaps (which require inferences).

In particular, readers frequently don’t notice that something they’re reading is inconsistent with something they already believe. Moreover, because of the limitations of working memory, only some of the text can be evaluated for coherence at one time (clearly, the greater the expertise in the topic, the more information that can be evaluated at one time — see the previous newsletter’s discussion of long-term working memory). Less skilled (and younger) readers in particular have trouble noticing inconsistencies within the text if they’re not very close to each other.

Let’s return for a moment to this idea of coherence gaps. Such gaps, it’s been theorized, stimulate readers to seek out the necessary connections and inferences. But clearly there’s a particular level that is effective for readers, if they often miss them. This relates to a counter-intuitive finding — that it’s not necessarily always good for the reader if the text is highly coherent. It appears that when the student has high knowledge, and when the task involves deep comprehension, then low coherence is actually better. It seems likely that knowledgeable students reading a highly coherent text will have an “illusion of competence” that keeps them from processing the text properly. This implies that there will be an optimal level of coherence gaps in a text, and this will vary depending on the skills and knowledge base of the reader.

Moreover, the comprehension strategy generally used with simple narratives focuses on referential and causal coherence, but lengthy scientific texts are likely to demand more elaborate strategies. Such strategies are often a problem for novices because they require more knowledge than can be contained in their working memory. Making notes (perhaps in the form of a concept map) while reading can help with this.

Next month I’ll continue this discussion, with more about the difficulties novices have with scientific texts and what they or their teachers can do about it, and the problems with introductory textbooks. In the meantime, the take-home message from this is:

Understanding scientific text is a skill that must be learned;

Scientific text is easier to understand the more closely it resembles narrative text, with a focus on goals and human agents;

How well the text is understood depends on the amount and extent of the coherence gaps in the text relative to the skills and domain knowledge of the reader.

References: 

Otero, J., León, J.A. & Graesser, A.C. (eds). 2002. The psychology of science text comprehension.

Reading Scientific Text

There are many memory strategies that can be effective in improving your recall of text. However, recent research shows that it is simplistic to think that you can improve your remembering by applying any of these strategies to any text. Different strategies are effective with different types of text.

One basic classification of text structure would distinguish between narrative text and expository text. We are all familiar with narrative text (story-telling), and are skilled in using this type of structure. Perhaps for this reason, narrative text tends to be much easier for us to understand and remember. Most study texts, however, are expository texts.

Unfortunately, many students (perhaps most) tend to be blind to the more subtle distinctions between different types of expository structure, and tend to treat all expository text as a list of facts. Building an effective mental model of the text (and thus improving your understanding and recall) is easier, however, if you understand the type of structure you're dealing with, and what strategy is best suited to deal with it.

Identifying structure

Five common types of structure used in scientific texts are:

  • Generalization: the extension or clarification of main ideas through explanations or examples
  • Enumeration: listing of facts
  • Sequence: a connecting series of events or steps
  • Classification: grouping items into classes
  • Comparison / contrast: examining the relationships between two or more things

Let's look at these in a little more detail.

Generalization

In generalization, a paragraph always has a main idea. Other sentences in the paragraph either clarify the main idea by giving examples or illustrations, or extend the main idea by explaining it in more detail. Here's an example:

Enumeration

Enumeration passages may be a bulleted or numbered list, or a list of items in paragraph form, for example:

Sequence

A sequence describes a series of steps in a process. For example:

Classification

In classification, items are grouped into categories. For example:

Comparison / contrast

This type of text looks at relationships between items. In comparison, both similarities and differences are studied. In contrast, only the differences are noted. For example:

[examples taken from Cook & Mayer 1988]

A study [1] involving undergraduate students inexperienced in reading science texts (although skilled readers otherwise) found that even a small amount of training substantially improved the students' ability to classify the type of structure and use it appropriately.

Let's look briefly at the training procedures used:

Training for generalization

This involved the following steps:

  • identify the main idea
  • list and define the key words
  • restate the main idea in your own words
  • look for evidence to support the main idea
    • what kind of support is there for the main idea?
    • are there examples, illustrations?
    • do they extend or clarify the main idea?

Training for enumeration

This involved the following steps:

  • name the topic
  • identify the subtopics
  • organize and list the details within each subtopic, in your own words

Training for sequence

This involved the following steps:

  • identify the topic
  • name each step and outline the details within each
  • briefly discuss what's different from one step to another

[Only these three structures were covered in training]

Most effective text structures

Obviously, the type of structure is constrained by the material covered. We can, however, make the general statement that text that encourages the student to make connections is most helpful in terms of both understanding and memory.

In light of this, compare/contrast would seem to be the most helpful type of text. Another text structure that is clearly of a similar type has also been found to be particularly effective: refutational text. In a refutational text, a common misconception is directly addressed (and refuted). Obviously, this is only effective when there is a common misconception that stands in the way of the reader's understanding -- but it's surprising how often this is the case! Incompatible knowledge is at least as bad as a lack of knowledge in hindering the learning of new information, and it really does need to be directly addressed.

Refutational text is however, not usually enough on its own. While helpful, it is more effective if combined with other, supportive, strategies. One such strategy is elaborative interrogation, which involves (basically) the student asking herself why such a fact is true.

Unfortunately, however, text structures that encourage connection building are not the most common type of structure in scientific texts. Indeed, it has been argued that "the presentation of information in science textbooks is more likely to resemble that of a series of facts [and thus] presents an additional challenge that may thwart readers' efforts to organize text ideas relative to each other".

Most effective strategies

The fundamental rule (that memory and understanding are facilitated by any making of connections) also points to the strategies that are most effective.

As a general rule, strategies that involve elaborating the connections between concepts in a text are the most effective, but it is also true that the specifics of such strategies vary according to the text structure (and other variables, such as the level of difficulty).

Let's look at how such a linking strategy might be expressed in the context of our five structures.

Generalization

Restatement in your own words -- paraphrasing -- is a useful strategy not simply because it requires you to actively engage with the material, but also because it encourages you to connect the information to be learned with the information you already have in your head. We can, however, take this further in the last stage, when we look for the evidence supporting the main idea, if we don't simply restrict ourselves to the material before us, but actively search our minds for our own supporting evidence.

Enumeration

This text structure is probably the hardest to engage with. You may be able to find a connective thread running through the listed items, or be able to group the listed items in some manner, but this structure is the one most likely to require mnemonic assistance (see verbal mnemonics and list-learning mnemonics).

Sequence

With this text structure, items are listed, but there is a connecting thread — a very powerful one. Causal connections are ones we are particularly disposed to pay attention to and remember; they are the backbone of narrative text. So, sequence has a strong factor going for it.

Illustrations particularly lend themselves to this type of structure, and research has shown that memory and comprehension is greatly helped when pictures portraying a series of steps, in a cause-and-effect chain, are closely integrated with explanatory text. The closeness is vital — a study that used computerized instruction found dramatic improvement in memory when the narration was synchronous with the animation, for example, but there was no improvement when the narration was presented either before or after the text. If you are presented with an illustration that is provided with companion text, but is not closely integrated with it, you will probably find it helpful to integrate it with the text yourself.

Classification

Classification is frequently as simple as grouping items. However, while this is in itself a useful strategy that helps memory, it will be more effective if the connections between and within groups are strong and clear. Connections within groups generally emphasize similarities, while connections between groups emphasize both similarities (between closely connected groups) and differences. Ordering groups in a hierarchical system is probably the type of arrangement most familiar to students, but don't restrict yourself to it. Remember, the important thing is that the arrangement has meaning for you, and that the connections emphasize the similarities and differences.

Compare / contrast

This type of structure lends itself, of course, to making connections. Your main strategy is probably therefore to simply organize the material in such a way as to make those connections clear and explicit.

References: 
  1. Cook, L.K. & Mayer, R.E. 1988. Teaching readers about the structure of scientific text. Journal of Educational Psychology, 80, 448-54.
  2. Castaneda, S., Lopez, M. & Romero, M. 1987. The role of five induced learning strategies in scientific text comprehension. The Journal of Experimental Education, 55(3), 125–131.
  3. Diakidoy, I.N., Kendeou, P. & Ioannides, C. 2002. Reading about energy: The effects of text structure in science learning and conceptual change. http://www.edmeasurement.net/aera/papers/KENDEOU.PDF

Speed Reading

Speed-reading courses generally make extravagant claims that no independent research has justified.

However, speed-reading courses can improve your reading skills.

Speed-reading courses principally improve reading by teaching you how to efficiently skim.

Speed-reading techniques

Like many memory improvement courses, speed-reading programs tend to make inflated claims. Also like memory programs, most speed-reading programs proffer the same advice. In essence, speed-reading techniques involve the following components:

  • learning to see more in a single eye fixation
  • eliminating subvocalization ("saying" the words in your head as you read them)
  • using your index finger as a visual guide down the page
  • active reading

How reading works

The first thing you need to understand about reading is that it proceeds in jerks. Though we might think our eyes are traveling smoothly along the lines, this is an illusion. What happens is that the eyes gaze steadily for around 240 milliseconds (for a college student; less practiced readers take longer) and then jerk along (during which nothing is registered), then stop again. We "read" during the eye fixations.

Now the duration of these fixations is not hugely different between readers of different abilities - a first-grade child takes about 330 ms, which is not a vast difference when you consider the chasm between a first-grade reader and an educated adult. What does change significantly is the number of fixations. Thus, to read a 100-word passage, our first-grade reader takes some 183 fixations, while our college reader takes only 75. From this, it is calculated that the first-grade reader is taking in 0.55 of a word in each fixation (100/183), while the college reader is grasping 1.33 words in each fixation (100/75). And from this, the reading rate is calculated. [These figures are of course only indicative - different types of reading matter will obviously produce different figures; the degree to which comprehension is emphasized also makes a difference].

This is not, of course, the whole story. We also can pick up some information about letters on either side of the fixation point - about 10 to 11 letter positions right of the fixation point (or left, if you're reading in a script that goes from right to left) for specific letter information, and about 15 positions for information about word length.

It is these facts that set bounds on how fast a person can read. It has been calculated that, even being very generous with the figures (reducing the duration of fixation to 200 ms; using the upper limit of how many letters we can see at one time), the upper limit for reading speed would be about 900 wpm.

How speed-reading works

This, then, is one of the things speed-reading programs aim to tackle - to increase the span of letters you can see in one fixation, and to alter the number of fixations. It is not, however, clear that (a) you can in fact train people to increase this span, or (b) it would be useful to do so.

What research does show, is that speed readers, while they don't change the length of their fixations, do significantly differ from normal readers in the pattern of their jumps. One researcher concluded from the pattern of eye movements, that speed-readers are in fact skimming.

Now there is certainly nothing wrong with skimming. Indeed, it is an extremely valuable skill, and if you wish to improve your skill at skimming, then it may well be worthwhile for you to use a speed-reading program to do so. On the other hand, there is no particular evidence that such programs do anything more than modestly improve your skimming skills.

Testing speed-reading skills

One study compared expert speed-readers against other groups of superior readers. While the speed-readers were fastest (444 words per minute - a respectable speed (250 wpm is average) but nowhere near the claims made by many of these programs), their comprehension was relatively low (71%). [1]

Interestingly, the speed-readers' speed was about twice that when they knew their speed was being tested but their comprehension would not be. In other words, like the rest of us, they slowed down markedly when they wanted to understand what they were reading (and what otherwise is the point of reading something?)

Well, actually, there is one circumstance when you read and do not look to understand or retain what you read - which brings us back to skimming.

So, how did our speed-readers compare on skimming skills? Two tasks were used to assess these:

  • to pick the best title to passages presented at rates of 7500, 1500 and 300 wpm
  • to write summaries of 6000-word passages presented at 24000, 6000, 1500 and 375 wpm

The speed readers were in fact no better than the other groups at picking titles, and though they were best at writing summaries when the passages were presented at 1500 wpm, they were no better than the others at the other rates of presentation. In an extra test of recall of important details, the speed readers in fact did worst.

Reading for understanding

Please don't mistake me, I am not condemning speed-reading - merely their often extravagant claims. Learning to skim (if you have not developed this skill on your own, and many have) is clearly worthwhile. Learning not to subvocalize - yes, I think there's value in that too. I cannot speak to any research, but I know from my own experience that when I am reading slowly, either because the material demands the effort or because I wish to make the book last longer, I make myself 'hear' the words in my head. Subvocalization does slow you down - if you wish to read faster that you can speak, you need to discard the habit.

And lastly, active reading. Well, that deserves a whole chapter of its own. So for now, for those who don't know what it means, I shall simply define it. Active reading is about thinking when you read. It is about asking yourself (and the book) questions. It is about anticipating what is going to be said, and relating what you read to what you already know, and making inferences about what you've read. Active reading is about understanding, and thus it is an essential part of reading to remember.

So that too, is a very useful skill.

This article originally appeared in the July 2002 newsletter.

References: 
  • Underwood, G. & Batt, V. 1996. Reading and understanding. Oxford: Blackwell.
  • Crowder, R.G. & Wagner, R.K. 1992. The Psychology of Reading. 2nd ed. Oxford University Press.
  1. Carver, R.P. 1985. How good are some of the world's best readers? Reading Research Quarterly, 20, 389-419.

Research from the National Reading Panel

A meta-analysis of the research on phonemic awareness training showed quite clearly the benefits of this technique, as a component of a successful reading program.

Similarly, the detailed analysis of many studies involving phonics instruction revealed that systematic phonics instruction produces significant benefits for students in kindergarten through 6th grade and for children having difficulty learning to read.

However, systematic phonics instruction requires phonemic awareness training to be effective, and, like phonemic awareness, must be only one component of a reading program — it is not sufficient in itself.

A review of the research also found that guided repeated oral reading procedures had a significant and positive impact on word recognition, fluency, and comprehension across a range of grade levels.

There is still insufficient research evidence obtained from studies of high methodological quality to support the idea that having students engage in independent silent reading with minimal guidance or feedback improves reading achievement, including fluency.

The available data do suggest that independent silent reading is not an effective practice when used as the only type of reading instruction to develop fluency and other reading skills, particularly with students who have not yet developed critical alphabetic and word reading skills.

The research done in vocabulary instruction and text comprehension was insufficient to enable the Panel to carry out the type of meta-analysis done for phonemic awareness and phonics instruction. The Panel did however make various recommendations regarding specific strategies on the basis of their analysis of the research.

Introduction

In 1997, the U.S. Congress asked the Director of the National Institute of Child Health and Human Development (NICHD) at the National Institutes of Health, in consultation with the Secretary of Education, to convene a national panel to assess the effectiveness of different approaches used to teach children to read. For over two years, the National Reading Panel reviewed research-based knowledge on reading instruction and held open panel meetings in Washington, DC, and regional meetings across the United States. On April 13, 2000, the NRP concluded its work and submitted "The Report of the National Reading Panel: Teaching Children to Read."

Below are edited excerpts from the report, regarding their findings on a variety of reading instruction strategies.

Phonemic Awareness

Phonemes are the smallest units composing spoken language. For example, the words “go” and “she” each consist of two sounds or phonemes. Instruction in phonemic awareness (PA) involves teaching children to focus on and manipulate phonemes in spoken syllables and words. PA instruction should not be confused with phonics instruction (see below), or with auditory discrimination, which refers to the ability to recognize whether two spoken words are the same or different.

An extensive and rigorous analysis of studies involving PA training found that teaching children to manipulate phonemes in words was highly effective under a variety of teaching conditions with a variety of learners across a range of grade and age levels and that teaching phonemic awareness to children significantly improves their reading more than instruction that lacks any attention to PA.

The evidence seems very clear that PA training caused improvement in students’ phonemic awareness, reading, and spelling. PA instruction also helped normally achieving children learn to spell, but was not effective for improving spelling in disabled readers.

The characteristics of PA training found to be most effective in enhancing PA, reading, and spelling skills included:

  • explicitly and systematically teaching children to manipulate phonemes with letters,
  • focusing the instruction on one or two types of phoneme manipulations rather than multiple types,
  • teaching children in small groups.

It is important to note that PA instruction is a component of a successful reading program, not a complete reading program.

It is also important to note that there are many ways to teach PA effectively, and that the motivation of both students and their teachers is a critical ingredient of success.

Phonics instruction

Phonics instruction is a way of teaching reading that stresses the acquisition of letter-sound correspondences and their use in reading and spelling. The primary focus of phonics instruction is to help beginning readers understand how letters are linked to sounds (phonemes) to form letter-sound correspondences and spelling patterns and to help them learn how to apply this knowledge in their reading. Phonics instruction may be provided systematically or incidentally. A variety of systematic approaches are listed below. In incidental phonics instruction, the teacher simply highlights particular elements opportunistically when they appear in text.

The detailed analysis of studies involving phonics instruction revealed that systematic phonics instruction produces significant benefits for students in kindergarten through 6th grade and for children having difficulty learning to read.

The ability to read and spell words was enhanced in kindergartners who received systematic beginning phonics instruction. First graders who were taught phonics systematically were better able to decode and spell, and they showed significant improvement in their ability to comprehend text. Older children receiving phonics instruction were better able to decode and spell words and to read text orally, but their comprehension of text was not significantly improved.

Systematic synthetic phonics instruction also had a positive and significant effect on disabled readers’ reading skills. Additionally, systematic synthetic phonics instruction was significantly more effective in improving low socioeconomic status children’s alphabetic knowledge and word reading skills than instructional approaches that were less focused on these initial reading skills.

Across all grade levels, systematic phonics instruction improved the ability of good readers to spell. The impact was strongest for kindergartners and decreased in later grades. For poor readers, the impact of phonics instruction on spelling was small.

Although conventional wisdom has suggested that kindergarten students might not be ready for phonics instruction, this assumption was not supported by the data. The effects of systematic early phonics instruction were significant and substantial in kindergarten and the 1st grade, indicating that systematic phonics programs should be implemented at those age and grade levels.

While the findings provide converging evidence that explicit, systematic phonics instruction is a valuable and essential part of a successful classroom reading program, there is a need to be cautious in giving a blanket endorsement of all kinds of phonics instruction. In particular, to be able to make use of letter-sound information, children need phonemic awareness. Programs that focus too much on the teaching of letter-sound relations and not enough on putting them to use are unlikely to be very effective. Systematic phonics instruction is only one component—albeit a necessary component—of a total reading program; systematic phonics instruction should be integrated with other reading instruction in phonemic awareness, fluency, and comprehension strategies to create a complete reading program. Unfortunately, there is as yet insufficient research to tell us exactly how phonics instruction can be most effectively incorporated into a successful reading program.

Phonics Instructional Approaches

Analogy Phonics —Teaching students unfamiliar words by analogy to known words (e.g., recognizing that the rime segment of an unfamiliar word is identical to that of a familiar word, and then blending the known rime with the new word onset, such as reading brick by recognizing that -ick is contained in the known word kick, or reading stump by analogy to jump).

Analytic Phonics—Teaching students to analyze letter-sound relations in previously learned words to avoid pronouncing sounds in isolation.

Embedded Phonics—Teaching students phonics skills by embedding phonics instruction in text reading, a more implicit approach that relies to some extent on incidental learning.

Phonics through Spelling—Teaching students to segment words into phonemes and to select letters for those phonemes (i.e., teaching students to spell words phonemically).

Synthetic Phonics —Teaching students explicitly to convert letters into sounds (phonemes) and then blend the sounds to form recognizable words.

Fluency

Fluency is one of several critical factors necessary for reading comprehension. Despite its importance as a component of skilled reading, fluency is often neglected in the classroom. Reading practice is generally recognized as an important contributor to fluency. Two instructional approaches, each of which has several variations, have typically been used to teach reading fluency:

  • guided repeated oral reading - encourages students to read passages orally with systematic and explicit guidance and feedback from the teacher
  • independent silent reading - encourages students to read silently on their own, inside and outside the classroom, with minimal guidance or feedback

On the basis of a detailed analysis of the available research that met NRP methodological criteria, the Panel concluded that guided repeated oral reading procedures that included guidance from teachers, peers, or parents had a significant and positive impact on word recognition, fluency, and comprehension across a range of grade levels. These studies were conducted in a variety of classrooms in both regular and special education settings with teachers using widely available instructional materials.

These results apply to all students—good readers as well as those experiencing reading difficulties. Nevertheless, there were important gaps in the research. In particular, the Panel could find no multiyear studies providing information on the relationship between guided oral reading and the emergence of fluency.

Independent Silent Reading

There has been widespread agreement that encouraging students to engage in wide, independent, silent reading increases reading achievement. Literally hundreds of correlational studies find that the best readers read the most and that poor readers read the least. These correlational studies suggest that the more that children read, the better their fluency, vocabulary, and comprehension. However, these findings are correlational in nature, and correlation does not imply causation.

Unfortunately only 14 of the studies that examined the effect of independent silent reading on reading achievement could meet the NRP research review methodology criteria, and these studies varied widely in their methodological quality and the reading outcome variables measured. Thus, a meta-analysis could not be conducted. Rather, the 14 studies were examined individually and in detail to identify converging trends and findings in the data.

With regard to the efficacy of having students engage in independent silent reading with minimal guidance or feedback, the Panel was unable to find a positive relationship between programs and instruction that encourage large amounts of independent reading and improvements in reading achievement, including fluency.

In other words, even though encouraging students to read more is intuitively appealing, there is still not sufficient research evidence obtained from studies of high methodological quality to support the idea that such efforts reliably increase how much students read or that such programs result in improved reading skills.

The available data do suggest that independent silent reading is not an effective practice when used as the only type of reading instruction to develop fluency and other reading skills, particularly with students who have not yet developed critical alphabetic and word reading skills.

Comprehension

Vocabulary Instruction

The importance of vocabulary knowledge has long been recognized in the development of reading skills. For various reasons, a formal meta-analysis could not be conducted. Instead the vocabulary instruction database was reviewed for trends across studies. Fifty studies dating from 1979 to the present were reviewed in detail. There were 21 different methods represented in these studies.

The studies reviewed suggest that vocabulary instruction does lead to gains in comprehension, but that methods must be appropriate to the age and ability of the reader.

The following approaches appeared to be helpful:

  • learning words before reading a text
  • techniques such as task restructuring and repeated exposure (including having the student encounter words in various contexts)
  • substituting easy words for more difficult words can assist low-achieving students.
  • use of computers in vocabulary instruction was found to be more effective than some traditional methods in a few studies
  • vocabulary also can be learned incidentally in the context of storybook reading or in listening to others

The Panel concluded that:

  • vocabulary should be taught both directly and indirectly
  • repetition and multiple exposures to vocabulary items are important
  • learning in rich contexts, incidental learning, and use of computer technology all enhance the acquisition of vocabulary
  • direct instruction should include task restructuring as necessary and should actively engage the student
  • dependence on a single vocabulary instruction method will not result in optimal learning.

They also concluded that, while much is known about the importance of vocabulary to success in reading, there is little research on the best methods or combinations of methods of vocabulary instruction and the measurement of vocabulary growth and its relation to instruction methods.

Text Comprehension Instruction

Comprehension is defined as “intentional thinking during which meaning is constructed through interactions between text and reader” (Harris & Hodges, 1995). Thus, readers derive meaning from text when they engage in intentional, problem solving thinking processes. The data suggest that text comprehension is enhanced when readers actively relate the ideas represented in print to their own knowledge and experiences and construct mental representations in memory.

In its review, the Panel identified 16 categories of text comprehension instruction of which 7 appear to have a solid scientific basis for concluding that these types of instruction improve comprehension in non-impaired readers. Some of these types of instruction are helpful when used alone, but many are more effective when used as part of a multiple-strategy method. The types of instruction are:

  • Comprehension monitoring, where readers learn how to be aware of their understanding of the material;
  • Cooperative learning, where students learn reading strategies together;
  • Use of graphic and semantic organizers (including story maps), where readers make graphic representations of the material to assist comprehension;
  • Question answering, where readers answer questions posed by the teacher and receive immediate feedback;
  • Question generation, where readers ask themselves questions about various aspects of the story;
  • Story structure, where students are taught to use the structure of the story as a means of helping them recall story content in order to answer questions about what they have read; and
  • Summarization, where readers are taught to integrate ideas and generalize from the text information.

In general, the evidence suggests that teaching a combination of reading comprehension techniques is the most effective. When students use them appropriately, they assist in recall, question answering, question generation, and summarization of texts. When used in combination, these techniques can improve results in standardized comprehension tests.

Nevertheless, some questions remain unanswered. More information is needed on ways to teach teachers how to use such proven comprehension strategies. The literature also suggests that teaching comprehension in the context of specific academic areas—for example, social studies—can be effective. If this is true of other subject areas, then it might be efficient to teach comprehension as a skill in content areas.

Questions remain as to which strategies are most effective for which age groups. More research is necessary to determine whether the techniques apply to all types of text genres, including narrative and expository texts, and whether the level of difficulty of the texts has an impact on the effectiveness of the strategies. Finally, it is critically important to know what teacher characteristics influence successful instruction of reading comprehension.

References: 

National Institute of Child Health and Human Development. (2000). Report of the National Reading Panel. Teaching children to read: an evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. Retrieved September 2, 2004 from http://www.nichd.nih.gov/publications/nrp/smallbook.htm

Reading

Poor readers may be divided into two groups: those whose problems stem primarily from an innate disruption in their neural systems, and those whose problems stem from deprivation.

In both cases, early intervention is very important.

In both cases, training specifically aimed at activating or strengthening specific neural circuitry is required.

Although individuals will have different impairments requiring instructional programs focusing on different skill components, an effective reading program will need to involve phonemic awareness training.

Encouragingly, there are now a number of training programs that have had positive results with retraining the brains of dyslexics.

Reading problems are more common in boys, and it appears that the genders develop different neural connections at different times. It may be that current reading programs favor the pattern of development in girls (I'm speculating here).

Types of reading disability

A longitudinal study that used imaging to compare brain activation patterns has identified two types of reading disability:

  • a primarily inherent type with higher cognitive ability (poor readers who compensate for disability), and
  • a more environmentally influenced type with lower cognitive skills and attendance at more disadvantaged schools (persistently poor readers).

It seems, compensated poor readers are able to overcome some of the disability, improving their ability to read words accurately and to understand what they read, while persistently poor readers continue to experience difficulties.Brain activation patterns showed a disruption in the neural systems for reading in compensated readers (specifically, a relative underactivation in posterior neural systems for reading located in left parietotemporal and occipitotemporal regions), while persistently poor readers had the neural circuitry for reading real words, but it had not been properly activated.These results point to the importance of providing early interventions aimed at stimulating both the ability to sound out words and to understand word meanings for children at risk for reading difficulties associated with disadvantage.

The importance of childhood environment is also emphasized by a study of older adults that found that the larger a person's head in adulthood, the less likely their cognitive abilities are to decline in later years. Head size in adulthood is determined in infancy: during the first year of life, babies' brains double in size, and by the time they are six, their brain weight has tripled. These, it appears, are the crucial years for laying down brain cells and neural connections — pointing to the importance of providing both proper nourishment and intellectual stimulation in these early years.

Impaired reading skills are found in some 20% of children - in boys, more than girls. Dyslexia - a disability which is found across all socioeconomic classes and all ethnicities - may be thought of as the low end of a continuum of reading ability. Training that helps dyslexics can also help those whose problems with reading are of lesser magnitude.

Gender differences

It has been suggested that the reason reading disabilities are more common among boys is that teachers simply tend to recognize the problem in boys more often, but it does now seem clear that boys really do have more reading difficulties than girls. Analysis of four large-scale studies of reading in children, involving some 9,800 children, found about 20% of the boys had reading disabilities compared with about 11% of the girls.

An EEG study of gender differences in the emerging connectivity of neural networks associated with phonological processing, verbal fluency, higher-level thinking and word retrieval (skills needed for beginning reading) in preschoolers confirms different patterns of growth in building connections between boys and girls. These differences point to the different advantages each gender brings to learning to read, and suggests the need for different emphases in teaching boys and girls to read. Boys favor vocabulary sub-skills needed for comprehension while girls favor fluency and phonic sub-skills needed for the mechanics of reading.

Reading programs

No educational system in the world has mastered the problem of literacy; every existing system produces an unacceptably high level of failures. So, we cannot point to a particular program of instruction and say, this is the answer. Indeed, I am certain that such an aim would be foredoomed to failure - given the differences between individuals, how can anyone believe that there is some magic bullet that will work on everyone?

Having said that, we have a far greater idea now of the requirements of an effective literacy program. One of the reasons for that is the work of the National Reading Panel in the United States, which spent some three years analyzing a huge number of studies into various aspects of reading instruction. I have summarized their findings here.

Direct instruction in specific components of reading skills is clearly only part, albeit a major part, of improving literacy. There is also the role of providing a stimulating environment, most particularly in the very early years. Little is known about the precise nature of the stimulation that would be most productive for providing the foundation for later literacy, but we may speculate that, apart form the obvious (being read to, etc), music may also be beneficial. Although I am not aware of any studies specifically looking at the possible benefits of music training for developing reading skills in children, recent research does provide evidence that giving children music instruction benefits their verbal memory.

Dyslexia

Dyslexics who are identified at a very early age (1st grade or earlier) have significantly fewer problems in learning to read than those who are not diagnosed until later. About 74%of the children with dyslexia who are poor readers in 3rd grade remain poor readers in the 9th grade, and often can’t read well as adults either. The earlier dyslexia is recognized and proper instruction given the better. Dyslexia tends to run in families.

Other research also points to the importance of early intervention.The brains of children with learning problems not only appear to develop more slowly than those of their unaffected counterparts but also actually may stop developing around the time of puberty's onset. In the study, children with impairments started out about three years behind, but their rate of improvement was very similar to that of the children without impairments — until around 10 years, when further development in the children with learning problems stopped.

What causes dyslexia?

We always want simple answers, but, as so often, it seems likely that there is no single, simple answer to the problem of dyslexia. Imaging studies have revealed that different phonological skills relate to activity in different parts of the brain when children read.There are probably several neurobiological profiles that correspond to different subtypes of dyslexia, each associated with varying deficits in different phonological skills.

For example, a key predictor of reading problems is lack of a skill called "rapid naming" - basically, being able to quickly retrieve the names of very familiar letters and numbers. It's been suggested that inability to rapidly name, and inability to differentiate between sounds, may be separate causes of dyslexia.

Interestingly, confirming a very old theory of dyslexia, it seems that normally developing readers learn to suppress the visual images reported by the right hemisphere of the brain - these images potentially interfere with input from the left. Dyslexic readers also appear to process auditory and visual sensory cues differently than do normal readers. During an auditory matching task, dyslexic readers showed increased activity in the visual pathway of the brain, while that same region deactivated in normal readers.

The tendency for dyslexia to run in families points to a genetic aspect. It has been found that brain images of people with a family history of dyslexia show significant reduction of gray matter in centers associated with language processing.

How to help dyslexics

A number of educational tools have been developed to teach people with dyslexia to read. Remembering that dyslexia is a label for a variety of different skill deficits, it is not surprising that an effective training program is not the same for everyone. The dyslexic person’s individual strengths and weaknesses must be assessed to find the program that will help best.

What is exciting is the converging evidence in recent years that it is indeed possible to re-train dyslexic brains. Clearly, the earlier the better, but one encouraging recent study found clear evidence for the benefits of a comprehensive reading program for dyslexic children aged 11-12 years. The study mapped the brain activation patterns of dyslexic children and good readers of the same age during two types of reading tests: phoneme mapping (which tests the ability to make correct associations between letters or letter combinations and sounds in nonsense words - e.g., if oa in ploat stands for the same sound as ow in crow) and morpheme mapping (having to decide if one word comes from another word - e.g., builder and build (yes); corner and corn (no)).

Both groups of children were found to use the same specific parts of their brains to perform the reading tasks, however, the activation of these regions was much weaker in the dyslexic children. The children with dyslexia then received a three-week training program based on principles outlined by the National Reading Panel Research findings of the NRP). After this program the levels of brain activation were found to be essentially the same in the two groups.The improvement in activation in the dyslexics was mirrored in improved reading scores.

Another recent study used an interactive computer game called MovingToRead (MTR) to significantly improve reading skills in poor second-grade readers within three months by practicing left-right movement discrimination for 5 to 10 minutes once or twice a week. It has been suggested that immature motion pathways — the circuit of neurons that helps readers determine the location of letters of a word and words on a page — may be related to reading problems in children. The therapy appears to be most effective with second-graders (age 7).

Other studies, such as Fast ForWord, and the Lindamood Phoneme Sequencing program (LiPS), also appear to have had good results. The point is not so much that any one specific program is the answer. Remember that different dyslexics will have different impairments, and accordingly, different programs will be effective for different individuals. Having said that, there are some common aspects to these programs. In particular, any such program should emphasize phoneme awareness.

Support for benefits of omega-3 for poorest readers

A large-ish study of primary school children has found that omega-3 supplementation may help many of those who are struggling most with reading.

The question of whether supplements of omega-3 fatty acids can help memory and cognition has been a contentious one, with some studies showing a positive effect and others failing to find an effect. My own take on this issue is that, like so many other things, it all depends on what you’re working with. It seems unsurprising if only those who have a deficient diet, or greater demands on their system (e.g., because of stress or age), or greater needs (e.g., because of a lack of cognitive reserve) might benefit from supplementation. A new study is a case in point.

The study involved 362 3rd, 4th, and 5th year students (mostly aged 7-9) from 74 schools, all of whom were reading poorly (in the lowest third). Participants were given 600 mg/day DHA (from algal oil), or a taste/color matched corn/soybean oil placebo. This was given in three capsules throughout the day, for 16 weeks.

The study found no significant improvement in reading or working memory for the DHA group as a whole, and although parents did report fewer behavioral problems, this was not confirmed by teachers.

However, there was a significant effect on reading if only those in the worst-performing 20% are considered (224 children), and an even greater effect if only those in the worst-performing 10% (105 children) are considered.

There was no significant effects for working memory, but I observe that this seems to be due to the much greater variability between individuals in the worst-performing groups (with this particularly evident in the bottom-10% group). It seems likely that whether or not DHA supplementation improves working memory capacity, depends on the factors affecting an individual’s WMC. Interestingly, a U.K. study that looked at the effects of omega-3 supplements on reading found highly significant benefits for those with Developmental Coordination Disorder.

The researchers do say that they had originally intended to look only at the poorest 20%, but decided to extend it to the lowest third when their participant numbers failed to reach the desired threshold (over half of the participant pool declined to take part).

The other point, of course, and typically for this research, is that participants only took the supplements for four months. We cannot rule out greater effects, and to a broader range of individuals, if they were taken for longer. There is also the question of compliance — compliance for those given at school was about 75% on average, and parental compliance is unknown.

In summary, I would say this is affirmation that omega-3 oils can be helpful for some individuals, but it shouldn’t be assumed that it’s a magic bullet for all.

Reference: 

[3069] Richardson, A. J., Burton J. R., Sewell R. P., Spreckelsen T. F., & Montgomery P. (2012).  Docosahexaenoic Acid for Reading, Cognition and Behavior in Children Aged 7–9 Years: A Randomized, Controlled Trial (The DOLAB Study). PLoS ONE. 7(9), e43909 - e43909.
Full text available at http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043909

Richardson AJ, Montgomery P (2005) The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics 115: 1360–1366.
 

Extra-large letter spacing improves reading in dyslexia

Increasing the spacing between letters has been found to improve reading accuracy and speed in dyslexic children, with poorest readers benefiting most.

It’s generally agreed among researchers that the most efficient intervention for dyslexia is to get the child reading more — the challenge is to find ways that enable that. Training programs typically target specific component skills, which are all well and good but leave the essential problem untouched: the children still need to read more. A new study shows that a very simple manipulation substantially improves reading in a large, unselected group of dyslexic children.

The study involved 74 French and Italian children — the two groups enabling researchers to compare a transparent writing system (Italian) with a relatively opaque one (French). The children had to read 24 short, meaningful, but unrelated, sentences. The text was written in Times New Roman 14 point. Standard interletter spacing was compared to spacing increased by 2.5 points. Space between words and lines was also increased commensurately. Each child read the same sentences in two sessions, two weeks apart. In one session, standard spacing was used, and in the other, increased spacing. Order of the sessions was of course randomly assigned.

The idea behind this is that dyslexic readers seem to be particularly affected by crowding. Crowding — interference from flanking letters — mostly affects peripheral vision in normal adult readers, but has been shown to be a factor in central vision in school-aged children. Standard letter spacing appears to be optimal for skilled adult readers.

The study found that increased spacing improved accuracy in reading the text by a factor of two. Moreover, this group effect conceals substantial individual differences. Those who had the most difficulties with the text benefitted the most from the extra spacing.

Reading speed also increased. In this case, despite the 2-week interval, there was an order effect: those who read the normal text first were faster on the 2nd (spaced) reading, while those who read the spaced text first read the 2nd (normal) text at the same speed. Analysis that removed the effects of repetition found that spacing produced a speed improvement of about 0.3 syllables a second, which corresponds to the average improvement across an entire school year for Italian dyslexic children.

There was no difference between the Italian and French children, indicating that this manipulation works in both transparent (in which letters and sounds match) and opaque writing systems (like English).

Subsequent comparison of 30 of the Italian children (mean age 11) with younger normally-developing children (mean age 8) matched for reading level and IQ found that spacing benefited only the dyslexic children.

A further experiment involving some of the Italian dyslexic children compared the spaced condition with normal text that had the same line spacing as the spaced text. This confirmed that it was the letter spacing that was critical.

These findings point to a very simple way of giving dyslexic children the practice they need in reading without any training. It is not suggested that it replaces specific-skill training, but rather augments it.

Reference: 

[3017] Zorzi, M., Barbiero C., Facoetti A., Lonciari I., Carrozzi M., Montico M., et al. (2012).  Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences. 109(28), 11455 - 11459.

Free downloads

There are a number of documents you can download for free from this website. All of these are in Adobe Acrobat format (pdf).

Most of these are collections of articles from the website:

Active reading

Mnemonics at a glance

Learning another language

Memory in normal aging

Helping your aging memory

Memory impairment in the aging brain

There is also a report on the effects of caffeine on memory and cognition

 

Why good readers might have reading comprehension difficulties and how to deal with them

The limitations of working memory have implications for all of us. The challenges that come from having a low working memory capacity are not only relevant for particular individuals, but also for almost all of us at some points of our lives. Because working memory capacity has a natural cycle — in childhood it grows with age; in old age it begins to shrink. So the problems that come with a low working memory capacity, and strategies for dealing with it, are ones that all of us need to be aware of.

Syndicate content