multitasking

Interruptions impact the quality of creative work

In 2013 I reported how a 3-second interruption while doing a task doubled the rate of sequence errors, while a 4s one tripled it. A new study has attempted to measure just how much ongoing interruptions can negatively affect the quality of a complex creative task.

tags problems: 

Topics: 

Media multitasking and academic achievement

Three recent studies point to the impact of social media and multiple device use on learning and cognitive control.

College students take years to learn to manage their social media so it doesn't impact their grades

A survey of 1,649 college students has found that freshmen average a total of two hours a day on Facebook, of which over an hour is spent also doing schoolwork, and that time spent on Facebook had a negative impact on their grade point average. For sophomores and juniors, only time spent using Facebook while doing schoolwork affected their GPA.

Topics: 

tags problems: 

tags: 

Frequent multitaskers are the worst at it

March, 2013

A survey of college students found that those who scored highest in multitasking ability were also least likely to multitask, while those who scored lowest were most likely to engage in it.

I’ve reported often on the perils of multitasking. Here is yet another one, with an intriguing new finding: it seems that the people who multitask the most are those least capable of doing so!

The study surveyed 310 undergraduate psychology students to find their actual multitasking ability, perceived multitasking ability, cell phone use while driving, use of a wide array of electronic media, and personality traits such as impulsivity and sensation-seeking.

Those who scored in the top quarter on a test of multitasking ability tended not to multitask. Some 70% of participants thought they were above average at multitasking, and perceived multitasking ability (rather than actual) was associated with multitasking. Those with high levels of impulsivity and sensation-seeking were also more likely to multitask (with the exception of using a cellphone while driving, which wasn’t related to impulsivity, though it was related to sensation seeking).

The findings suggest that those who multitask don’t do so because they are good at multitasking, but because they are poor at focusing on one task.

Reference: 

Source: 

tags development: 

Topics: 

tags memworks: 

tags problems: 

tags: 

Even tiny interruptions can double or treble work errors

January, 2013

A new study quantifies the degree to which tasks that involve actions in a precise sequence are vulnerable to interruptions.

In my book on remembering intentions, I spoke of how quickly and easily your thoughts can be derailed, leading to ‘action slips’ and, in the wrong circumstances, catastrophic mistakes. A new study shows how a 3-second interruption while doing a task doubled the rate of sequence errors, while a 4s one tripled it.

The study involved 300 people, who were asked to perform a series of ordered steps on the computer. The steps had to be performed in a specific sequence, mnemonically encapsulated by UNRAVEL, with each letter identifying the step. The task rules for each step differed, requiring the participant to mentally shift gears each time. Moreover, task elements could have multiple elements — for example, the letter U could signal the step, one of two possible responses for that step, or be a stimulus requiring a specific response when the step was N. Each step required the participant to choose between two possible responses based on one stimulus feature — features included whether it was a letter or a digit, whether it was underlined or italic, whether it was red or yellow, whether the character outside the outline box was above or below. There were also more cognitive features, such as whether the letter was near the beginning of the alphabet or not. The identifying mnemonic for the step was linked to the possible responses (e.g., N step – near or far; U step — underline or italic).

At various points, participants were very briefly interrupted. In the first experiment, they were asked to type four characters (letters or digits); in the second experiment, they were asked to type only two (a very brief interruption indeed!).

All of this was designed to set up a situation emulating “train of thought” operations, where correct performance depends on remembering where you are in the sequence, and on producing a situation where performance would have reasonably high proportion of errors — one of the problems with this type of research has been the use of routine tasks that are generally performed with a high degree of accuracy, thus generating only small amounts of error data for analysis.

In both experiments, interruptions significantly increased the rate of sequence errors on the first trial after the interruption (but not on subsequent ones). Nonsequence errors were not affected. In the first experiment (four-character interruption), the sequence error rate on the first trial after the interruption was 5.8%, compared to 1.8% on subsequent trials. In the second experiment (two-character interruption), it was 4.3%.

The four-character interruptions lasted an average of 4.36s, and the two-character interruptions lasted an average of 2.76s.

Whether the characters being typed were letters or digits made no difference, suggesting that the disruptive effects of interruptions are not overly sensitive to what’s being processed during the interruption (although of course these are not wildly different processes!).

The absence of effect on nonsequence errors shows that interruptions aren’t disrupting global attentional resources, but more specifically the placekeeping task.

As I discussed in my book, the step also made a significant difference — for sequence errors, middle steps showed higher error rates than end steps.

All of this confirms and quantifies how little it takes to derail us, and reminds us that, when engaged in tasks involving the precise sequence of sub-tasks (which so many tasks do), we need to be alert to the dangers of interruptions. This is, of course, particularly true for those working in life-critical areas, such as medicine.

Reference: 

[3207] Altmann EM, Gregory J, Hambrick DZ. Momentary Interruptions Can Derail the Train of Thought. Journal of Experimental Psychology: General. 2013 :No - Pagination Specified.

Source: 

tags memworks: 

tags problems: 

Topics: 

When multitasking is more of a problem

October, 2012

Multitasking is significantly worse if your tasks use the same modality. Instant messaging while doing another visual-motor task reduces performance more than talking on the phone.

I’ve reported, often, on the evidence that multitasking is a problem, something we’re not really designed to do well (with the exception of a few fortunate individuals), and that the problem is rooted in our extremely limited working memory capacity. I’ve also talked about how ‘working memory’ is a bit of a misnomer, given that we probably have several ‘working memories’, for different modalities.

It follows from that, that tasks that use different working memories should be easier to do at the same time than tasks that use the same working memory. A new study confirms that multitasking is more difficult if you are trying to use the same working memory modules for both tasks.

In the study, 32 students carried out a visual pattern-matching task on a computer while giving directions to another person either via instant messaging (same modalities — vision and motor) or online voice chat (different modality — hearing).

While both simultaneous tasks significantly worsened performance on the pattern-matching task, communicating by IM (same modality) led to a 50% drop in visual pattern-matching performance (from a mean of 11 correct responses to a mean of 5), compared to only a 30% drop in the voice condition (mean of 7).

The underlying reason for the reductions in performance seems to be in the effect on eye movement: the number and duration of eye fixations was reduced in both dual-task conditions, and more so in the IM condition.

Note that this is apparently at odds with general perception. According to one study, IM is perceived to be less disruptive than the phone. Moreover, in the current study, participants felt they performed better in the IM condition (although this palpably wasn’t true). This feeling may reflect the greater sense of personal control in instant messaging compared to chat. It may also reflect an illusion of efficiency generated by using the visual channel — because we are so strongly practiced in using vision, we may find visual tasks more effortless than tasks using other modalities. (I should note that most people, regardless of the secondary task, felt they did better than they had! But those in the IM condition were more deluded than those in the chat condition.)

The finding also explains why texting is particularly dangerous when driving — both rely heavily on the same modalities.

All this is consistent with the idea that there are different working memory resources which can operate in parallel, but share one particular resource which manages the other resources.

The idea of ‘threaded cognition’ — of maintaining several goal threads and strategically allocating resources as needed — opens up the idea that multitasking is not all bad. In recent years, we have focused on multitasking as a problem. This has been a very necessary emphasis, given that its downsides were unappreciated. But although multitasking has its problems, it may be that there are trade-offs that come from the interaction between the tasks being carried out.

In other words, rather than condemning multitasking, we need to learn its parameters. This study offers one approach.

Reference: 

Source: 

tags memworks: 

tags problems: 

Topics: 

How meditation may improve multitasking and attention

September, 2012

Three recent studies show that meditation training reduces the stress of multitasking and reduces task-switching, that it improves white matter efficiency, and that the improved executive control may be largely to do with better emotional awareness and regulation.

Meditation may improve multitasking

I recently reported that developing skill at video action games doesn’t seem to improve general multitasking ability, but perhaps another approach might be more successful. Meditation has, of course, been garnering growing evidence that it can help improve attentional control. A new study extends that research to multitasking in a realistic work setting.

The study involved three groups of 12-15 female human resource managers, of whom one group received eight weeks of mindfulness-based meditation training, another received eight weeks of body relaxation training, and another initially received no training (control), before receiving the mindfulness training after the eight weeks.

Before and after each eight-week period, the participants were given a stressful test of their multitasking abilities, requiring them to use email, calendars, instant-messaging, telephone and word-processing tools to perform common office tasks (scheduling a meeting; finding a free conference room; writing a draft announcement of the meeting, eating snacks and drinking water, writing a memo proposing a creative agenda item for the meeting). Necessary information came from emails, instant messages, telephone calls, and knocks on the door. The participants had 20 minutes to complete the tasks.

The meditation group reported lower levels of stress during the multitasking test compared to the control and relaxation groups. They also spent more time on tasks and switched tasks less often, while taking no longer to complete the overall job than the others. Both meditation and relaxation groups showed improved memory for the tasks they were performing.

After the control group underwent the meditation training, their results matched those of the meditation group.

The meditation training emphasized:

  • control of attentional focus
  • focusing attention in the present moment or task
  • switching focus
  • breath and body awareness.

The relaxation training emphasized progressive tensing and relaxing of major muscle groups, aided by relaxation imagery.

It's interesting that overall time on task didn't change (the researchers remarked that the meditators didn't take any longer, but of course most of us would be looking for it to become shorter!), but I wouldn't read too much into it. The task was relatively brief. It would be interesting to see the effects over the course of, say, a day. Nor did the study look at how well the tasks were done.

But it is, of course, important that meditation training reduced task-switching and stress. Whether it also has a postitive effect on overall time and quality of work is a question for another day.

IBMT improves white matter efficiency

A recent imaging study has found that four weeks of a form of mindfulness meditation called integrative body–mind training (IBMT) improved white matter efficiency in areas surrounding the anterior cingulate cortex, compared to controls given relaxation training.

The anterior cingulate is part of the brain network related to self-regulation. Deficits in activation in this part of the brain have been associated with attention deficit disorder, dementia, depression, schizophrenia, and other disorders.

Using the data from a 2010 study involving 45 U.S. college students, and another involving 68 Chinese students, researchers found that axon density (one factor in white matter efficiency) had improved after two weeks, but not myelin formation. After a month (about 11 hours of meditation), both had improved. Mood improved by two weeks.

Previous studies involving computer-based training for improving working memory have found changes in myelination, but not axon density.

Meditators’ better cognitive control may be rooted in emotional regulation

Previous work has found that people who engage in meditation show higher levels of executive control on laboratory tasks.

An electrical signal called the Error Related Negativity (ERN) occurs in the brain within 100 ms of an error being committed. When meditators and non-meditators were given the Stroop Test, meditators not only tended to do better on the test, but their ERNs were stronger.

The interesting thing about this is that the best performers were those who scored highest on emotional acceptance. Mindful awareness was less important. It’s suggested that meditators may be able to control their behavior better not because of their sharper focus, but because they are more aware of their emotions and regulate them better.

Something to think about!

Reference: 

Levy, D. M., Wobbrock, J. O., Kaszniak, A. W., & Ostergren, M. (2012). The Effects of Mindfulness Meditation Training on Multitasking in a High-Stress Information Environment, 45–52. Full text available at http://faculty.washington.edu/wobbrock/pubs/gi-12.02.pdf

[3051] Tang Y-Y, Lu Q, Fan M, Yang Y, Posner MI. Mechanisms of white matter changes induced by meditation. Proceedings of the National Academy of Sciences [Internet]. 2012 ;109(26):10570 - 10574. Available from: http://www.pnas.org/content/109/26/10570

[3052] Teper R, Inzlicht M. Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring. Social Cognitive and Affective Neuroscience [Internet]. 2012 . Available from: http://scan.oxfordjournals.org/content/early/2012/05/13/scan.nss045

Source: 

tags memworks: 

Topics: 

tags strategies: 

tags problems: 

Video gamers don’t become expert multitaskers

August, 2012

A comparison of skilled action gamers and non-gamers reveals that all that multitasking practice doesn’t make you any better at multitasking in general.

The research is pretty clear by this point: humans are not (with a few rare exceptions) designed to multitask. However, it has been suggested that the modern generation, with all the multitasking they do, may have been ‘re-wired’ to be more capable of this. A new study throws cold water on this idea.

The study involved 60 undergraduate students, of whom 34 were skilled action video game players (all male) and 26 did not play such games (19 men and 7 women). The students were given three visual tasks, each of which they did on its own and then again while answering Trivial Pursuit questions over a speakerphone (designed to mimic talking on a cellphone).

The tasks included a video driving game (“TrackMania”), a multiple-object tracking test (similar to a video version of a shell game), and a visual search task (hidden pictures puzzles from Highlights magazine).

While the gamers were (unsurprisingly) significantly better at the video driving game, the non-gamers were just as good as them at the other two tasks. In the dual-tasking scenarios, performance declined on all the tasks, with the driving task most affected. While the gamers were affected less by multitasking during the driving task compared to the non-gamers, there was no difference in the amount of decline between gamers and non-gamers on the other two tasks.

Clearly, the smaller effect of dual-tasking on the driving game for gamers is a product of their greater expertise at the driving game, rather than their ability to multitask better. It is well established that the more skilled you are at a task, the more automatic it becomes, and thus the less working memory capacity it will need. Working memory capacity / attention is the bottleneck that prevents us from being true multitaskers.

In other words, the oft-repeated (and somewhat depressing) conclusion remains: you can’t learn to multitask in general, you can only improve specific skills, enabling you to multitask reasonably well while doing those specific tasks.

Reference: 

Source: 

Topics: 

tags strategies: 

tags study: 

tags lifestyle: 

tags memworks: 

tags problems: 

Why multitasking is more difficult with age

April, 2011

A new study reveals that older adults’ greater problems with multitasking stem from their impaired ability to disengage from an interrupting task and restore the original task.

Comparison of young adults (mean age 24.5) and older adults (mean age 69.1) in a visual memory test involving multitasking has pinpointed the greater problems older adults have with multitasking. The study involved participants viewing a natural scene and maintaining it in mind for 14.4 seconds. In the middle of the maintenance period, an image of a face popped up and participants were asked to determine its sex and age. They were then asked to recall the original scene.

As expected, older people had more difficulty with this. Brain scans revealed that, for both groups, the interruption caused their brains to disengage from the network maintaining the memory and reallocate resources to processing the face. But the younger adults had no trouble disengaging from that task as soon as it was completed and re-establishing connection with the memory maintenance network, while the older adults failed both to disengage from the interruption and to reestablish the network associated with the disrupted memory.

This finding adds to the evidence that an important (perhaps the most important) reason for cognitive decline in older adults is a growing inability to inhibit processing, and extends the processes to which that applies.

Reference: 

Source: 

tags development: 

Topics: 

tags problems: 

tags memworks: 

Older adults have better implicit memory

April, 2011

A new study further confirms the idea that a growing inability to ignore irrelevancies is behind age-related cognitive decline.

A study involving 125 younger (average age 19) and older (average age 69) adults has revealed that while younger adults showed better explicit learning, older adults were better at implicit learning. Implicit memory is our unconscious memory, which influences behavior without our awareness.

In the study, participants pressed buttons in response to the colors of words and random letter strings — only the colors were relevant, not the words themselves. They then completed word fragments. In one condition, they were told to use words from the earlier color task to complete the fragments (a test of explicit memory); in the other, this task wasn’t mentioned (a test of implicit memory).

Older adults showed better implicit than explicit memory and better implicit memory than the younger, while the reverse was true for the younger adults. However, on a further test which required younger participants to engage in a number task simultaneously with the color task, younger adults behaved like older ones.

The findings indicate that shallower and less focused processing goes on during multitasking, and (but not inevitably!) with age. The fact that younger adults behaved like older ones when distracted points to the problem, for which we now have quite a body of evidence: with age, we tend to become more easily distracted.

Reference: 

Source: 

tags development: 

Topics: 

tags memworks: 

tags problems: 

tags: 

Half-heard phone conversations reduce cognitive performance

September, 2010

A new study finds that overheard cell phone conversations are particularly distracting because we can't predict what will be said next.

Why are other people’s phone conversations so annoying? A new study suggests that hearing only half a conversation is more distracting than other kinds of conversations because we're missing the other side of the story and so can't predict the flow of the conversation. This finding suggests that driving a car might be impaired not only by the driver talking on the phone, but also by passengers talking on their phones.

It also tells us something about the way we listen to people talking — we’re actively predicting what the person is going to say next. This helps explain something I’ve always wondered about. Listen to people talking in a language you don’t know and you’re often amazed how fast they talk. See an audio recording of the soundwaves, and you’ll wonder how people know when one word starts and another begins. Understanding what people are saying is not as easy as we believe it is — it takes a lot of experience. An important part of that experience, it seems, is learning the patterns of people’s speech, so we can predict what’s going to come next.

The study showed that people overhearing cell phone conversations did more poorly on everyday tasks that demanded attention, than when overhearing both sides of a cell phone conversation, which resulted in no decreased performance. By controlling for other acoustic factors, the researchers demonstrated that it was the unpredictable information content of the half-heard conversation that was so distracting.

Reference: 

Emberson, L.L., Lupyan, G., Goldstein, M.H. & Spivey, M.J. 2010. Overheard Cell-Phone Conversations: When Less Speech Is More Distracting Psychological Science first published on September 3, 2010 as doi:10.1177/0956797610382126

Source: 

tags: 

Topics: 

tags strategies: 

tags problems: 

Pages

Subscribe to RSS - multitasking