perception

Verbal, not visual, cues enhance visual detection

August, 2010

We know language affects what we perceive, but a new study shows it can also improve our ability to perceive, even when an object should be invisible to us.

I’ve talked about the importance of labels for memory, so I was interested to see that a recent series of experiments has found that hearing the name of an object improved people’s ability to see it, even when the object was flashed onscreen in conditions and speeds (50 milliseconds) that would render it invisible. The effect was specific to language; a visual preview didn’t help.

Moreover, those who consider their mental imagery particularly vivid scored higher when given the auditory cue (although this association disappeared when the position of the object was uncertain). The researchers suggest that hearing the image labeled evokes an image of the object, strengthening its visual representation and thus making it visible. They also suggested that because words in different languages pick out different things in the environment, learning different languages might shape perception in subtle ways.

Reference: 

Source: 

Topics: 

tags memworks: 

tags strategies: 

Brain fitness program produces working memory improvement in older adults

August, 2010

A new study shows improvement in visual working memory in older adults following ten hours training with a commercial brain training program. The performance gains correlated with changes in brain activity.

While brain training programs can certainly improve your ability to do the task you’re practicing, there has been little evidence that this transfers to other tasks. In particular, the holy grail has been very broad transfer, through improvement in working memory. While there has been some evidence of this in pilot programs for children with ADHD, a new study is the first to show such improvement in older adults using a commercial brain training program.

A study involving 30 healthy adults aged 60 to 89 has demonstrated that ten hours of training on a computer game designed to boost visual perception improved perceptual abilities significantly, and also increased the accuracy of their visual working memory to the level of younger adults. There was a direct link between improved performance and changes in brain activity in the visual association cortex.

The computer game was one of those developed by Posit Science. Memory improvement was measured about one week after the end of training. The improvement did not, however, withstand multi-tasking, which is a particular problem for older adults. The participants, half of whom underwent the training, were college educated. The training challenged players to discriminate between two different shapes of sine waves (S-shaped patterns) moving across the screen. The memory test (which was performed before and after training) involved watching dots move across the screen, followed by a short delay and then re-testing for the memory of the exact direction the dots had moved.

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

tags problems: 

tags strategies: 

Brain training reverses age-related cognitive decline

August, 2010

A month's training in sound discrimination reversed normal age-related cognitive decline in the auditory cortex in old rats.

A rat study demonstrates how specialized brain training can reverse many aspects of normal age-related cognitive decline in targeted areas. The month-long study involved daily hour-long sessions of intense auditory training targeted at the primary auditory cortex. The rats were rewarded for picking out the oddball note in a rapid sequence of six notes (five of them of the same pitch). The difference between the oddball note and the others became progressively smaller. After the training, aged rats showed substantial reversal of their previously degraded ability to process sound. Moreover, measures of neuron health in the auditory cortex had returned to nearly youthful levels.

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

tags strategies: 

Language helps people solve spatial problems

July, 2010

Signers reveal that more complex language helps you find a hidden object, providing more support for the theory that language shapes how we think and perceive.

Because Nicaraguan Sign Language is only about 35 years old, and still evolving rapidly, the language used by the younger generation is more complex than that used by the older generation. This enables researchers to compare the effects of language ability on other abilities. A recent study found that younger signers (in their 20s) performed better than older signers (in their 30s) on two spatial cognition tasks that involved finding a hidden object. The findings provide more support for the theory that language shapes how we think and perceive.

Reference: 

[1629] Pyers, J. E., Shusterman A., Senghas A., Spelke E. S., & Emmorey K.
(2010).  Evidence from an emerging sign language reveals that language supports spatial cognition.
Proceedings of the National Academy of Sciences. 107(27), 12116 - 12120.

Source: 

Topics: 

tags memworks: 

tags strategies: 

Encoding features of complex and unfamiliar objects

Journal Article: 

Modigliani, V., Loverock, D.S. & Kirson, S.R. (1998). Encoding features of complex and unfamiliar objects. American Journal Of Psychology, 111, 215-239.

  • We don't store in memory every detail of common objects.
  • Repeated exposures to an object don't necessarily result in remembering any more about them.

There is a pervasive myth that every detail of every experience we've ever had is recorded in memory. It is interesting to note therefore, that even very familiar objects, such as coins, are rarely remembered in accurate detail1.

We see coins every day, but we don't see them. What we remember about coins are global attributes, such as size and color, not the little details, such as which way the head is pointing, what words are written on it, etc. Such details are apparently noted only if the person's attention is specifically drawn to them.

There are several interesting conclusions that can be drawn from studies that have looked at the normal encoding of familiar objects:

  • you don't automatically get more and more detail each time you see a particular object
  • only a limited amount of information is extracted the first time you see the object
  • the various features aren't equally important
  • normally, global rather than detail features are most likely to be remembered

In the present study, four experiments investigated people's memories for drawings of oak leaves. Two different types of oak leaves were used - "red oak" and "white oak". Subjects were shown two drawings for either 5 or 60 seconds. The differences between the two oak leaves varied, either:

  • globally (red vs white leaf), or
  • in terms of a major feature (the same type of leaf, but varying in that twomajor lobes are combined in one leaf but not in the other), or
  • in terms of a minor feature (one small lobe eliminated in one but not in theother).

According to the principle of top-down encoding, the time needed to detect a difference between stimuli that differ in only one critical feature will increase as the level of that feature decreases (from a global to a major specific to a lower-grade specific feature).

The results of this study supported the view that top-down encoding occurs, and indicate that, unless attention is explicitly directed to specific features, the likelihood of encoding such features becomes less the lower its structural level. One of the experiments tested whether the size of the feature made a difference, and it was decided that it didn't.

References

1. Jones, G.V. 1990. Misremembering a familiar object: When left is not right. Memory & Cognition, 18, 174-182.

Jones, G.V. & Martin, M. 1992. Misremembering a familiar object: Mnemonic illusion, not drawing bias. Memory & Cognition, 20, 211-213.

Nickerson, R.S. & Adams, M.J. 1979. Long-term memory of a common object. Cognitive Psychology, 11, 287-307.

Topics: 

tags memworks: 

Pages

Subscribe to RSS - perception
Error | About memory

Error

The website encountered an unexpected error. Please try again later.