laterality

Cognitive recovery after brain damage more complex than realized

January, 2011

Two new studies show us that recovery after brain damage is not as simple as one region ‘taking over’ for another, and that some regions are more easily helped than others.

When stroke or brain injury damages a part of the brain controlling movement or sensation or language, other parts of the brain can learn to compensate for this damage. It’s been thought that this is a case of one region taking over the lost function. Two new studies show us the story is not so simple, and help us understand the limits of this plasticity.

In the first study, six stroke patients who have lost partial function in their prefrontal cortex, and six controls, were briefly shown a series of pictures to test the ability to remember images for a brief time (visual working memory) while electrodes recorded their EEGs. When the images were shown to the eye connected to the damaged hemisphere, the intact prefrontal cortex (that is, the one not in the hemisphere directly receiving that visual input) responded within 300 to 600 milliseconds.

Visual working memory involves a network of brain regions, of which the prefrontal cortex is one important element, and the basal ganglia, deep within the brain, are another. In the second study, the researchers extended the experiment to patients with damage not only to the prefrontal cortex, but also to the basal ganglia. Those with basal ganglia damage had problems with visual working memory no matter which part of the visual field was shown the image.

In other words, basal ganglia lesions caused a more broad network deficit, while prefrontal cortex lesions resulted in a more limited, and recoverable, deficit. The findings help us understand the different roles these brain regions play in attention, and emphasize how memory and attention are held in networks. They also show us that the plasticity compensating for brain damage is more dynamic and flexible than we realized, with intact regions stepping in on a case by case basis, very quickly, but only when the usual region fails.

Reference: 

[2034] Voytek, B., Davis M., Yago E., Barcel F., Vogel E. K., & Knight R. T.
(2010).  Dynamic Neuroplasticity after Human Prefrontal Cortex Damage.
Neuron. 68(3), 401 - 408.

[2033] Voytek, B., & Knight R. T.
(2010).  Prefrontal cortex and basal ganglia contributions to visual working memory.
Proceedings of the National Academy of Sciences. 107(42), 18167 - 18172.

Source: 

Topics: 

tags memworks: 

tags problems: 

Link between handedness and dyslexia

January, 2011

A genome study has found a gene variant that leads to greater right-hand skill in dyslexics, but not others. The gene is implicated in embryonic development.

While brain laterality exists widely among animal species, the strong dominance of right-handedness in humans is something of an anomaly. As this implies a left-hemisphere dominance for motor function, it’s been suggested that the evolution of language (also mainly a function of the left hemisphere) may be behind the right-handed bias, leading to a search for a connection between hand preference and language disorders. To date, no convincing evidence has been found.

However, a genetic study of 192 dyslexic children has now revealed a strong link between a variant of a gene called PCSK6 and relative hand skill in these children. Specifically, those who carried the variant in PCSK6 were, on average, more skilled with their right hand compared to the left than those not carrying the variant. However, among the general population, this gene variant is associated with less right-hand skill.

The findings provide evidence for a link between brain lateralization and dyslexia. The gene’s protein is known to interact with another protein (NODAL) that plays a key role in establishing left-right asymmetry early in embryonic development, suggesting that the gene may affect the initial left-right patterning of the embryo, with consequences for cerebral lateralization.

Reference: 

Source: 

Topics: 

tags memworks: 

tags problems: 

Autism study reveals how a genetic variant rewires the brain

December, 2010

An imaging study has revealed how one of the many genes implicated in autism is associated with an atypical pattern of connectivity between the hemispheres and within and from the frontal lobe.

Many genes have been implicated in autism; one of them is the CNTNAP2 gene. This gene (which is also implicated in specific language disorder) is most active during brain development in the frontal lobe. An imaging study involving 32 children, half of whom had autism, has revealed that regardless of their diagnosis, the children carrying the risk variant showed communication problems within and with the frontal lobe. The frontal lobe was over-connected to itself and poorly connected to the rest of the brain, particularly the back of the brain.

There were also differences in connectivity between the left and right sides of the brain — in those with the non-risk gene, communication pathways in the frontal lobe linked more strongly to the left side of the brain (which is more strongly involved in language), but in those with the risk variant, the communications pathways connected more broadly to both sides of the brain.

The findings could lead to earlier detection of autism, and new interventions to strengthen connections between the frontal lobe and left side of the brain. But it should be emphasized that the autistic spectrum disorders probably encompass a number of different genetic patterns associated with different variants of ASD.

It should also be emphasized that this gene variant, although it increases the risk of various neurodevelopmental disorders (such as specific language impairment, which has also been associated with this gene), is found among a third of the population. So the pattern of connectivity, although not ‘normal’ (i.e., the majority position), is not abnormal. It would be interesting to explore whether other, more subtle, cognitive differences correlate with this genetic difference.

Reference: 

Scott-Van Zeeland., A.A. et al. 2010. Altered Functional Connectivity in Frontal Lobe Circuits Is Associated with Variation in the Autism Risk Gene CNTNAP2. Science Translational Medicine, 2 (56), DOI: 10.1126/scitranslmed.3001344 http://stm.sciencemag.org/content/2/56/56ra80.abstract

Source: 

Topics: 

tags: 

tags memworks: 

tags problems: 

Face coding varies by gender, sexual orientation, & handedness

July, 2010

Why are women better at recognizing faces? Apparently it has to do with using both sides of your brain, and homosexual men tend to do it too.

Why do women tend to be better than men at recognizing faces? Two recent studies give a clue, and also explain inconsistencies in previous research, some of which has found that face recognition mainly happens in the right hemisphere part of the face fusiform area, and some that face recognition occurs bilaterally. One study found that, while men tended to process face recognition in the right hemisphere only, women tended to process the information in both hemispheres. Another study found that both women and gay men tended to use both sides of the brain to process faces (making them faster at retrieving faces), while heterosexual men tended to use only the right. It also found that homosexual males have better face recognition memory than heterosexual males and homosexual women, and that women have better face processing than men. Additionally, left-handed heterosexual participants had better face recognition abilities than left-handed homosexuals, and also tended to be better than right-handed heterosexuals. In other words, bilaterality (using both sides of your brain) seems to make you faster and more accurate at recognizing people, and bilaterality is less likely in right-handers and heterosexual males (and perhaps homosexual women). Previous research has shown that homosexual individuals are 39% more likely to be left-handed.

Reference: 

Proverbio AM, Riva F, Martin E, Zani A (2010) Face Coding Is Bilateral in the Female Brain. PLoS ONE 5(6): e11242. doi:10.1371/journal.pone.0011242

[1611] Brewster, P. W. H., Mullin C. R., Dobrin R. A., & Steeves J. K. E.
(2010).  Sex differences in face processing are mediated by handedness and sexual orientation.
Laterality: Asymmetries of Body, Brain and Cognition.

Source: 

Topics: 

tags: 

tags memworks: 

Subscribe to RSS - laterality
Error | About memory

Error

The website encountered an unexpected error. Please try again later.