attention

No advantage for bilingual children in executive function

  • A new study adds to recent research challenging the idea that bilingualism benefits children's executive function.

The idea that bilingual children have superior executive function compared to monolingual children has been challenged in recent research. Executive function controls your attention, and helps with such tasks as remembering instructions, controlling responses, and shifting swiftly between tasks. It is positively correlated with children's academic achievement.

However, executive function is a complex construct, with several different components. It has been suggested that inconsistent research findings as to the advantage of bilingualism may be related to differences in how executive function is measured and conceptualized.

A new German study hopes to have dealt with this issues through its methodology and analysis.

The study compared 242 children (aged 5-15) who spoke both Turkish and German, and 95 children who spoke only German. The children’s executive function was tested using a computerized task called Hearts and Flowers, that required the child to press a different key in response to stimuli on the screen, depending on the condition. The congruent condition matched the key to the location of the heart stimulus; the incongruent condition required the child to press the key on the opposite side to where the flower stimulus appeared; the mixed condition tested the ability of the child to use the correct rule depending on which stimulus appeared.

The study found no significant differences in executive function between the two groups, after taking into account maternal education, child gender, age, and working memory (digit span backwards).

The researchers also took into account children's German and Turkish vocabulary size and exposure to both languages, factors for which previous studies on the topic had been criticized for lacking.

https://www.eurekalert.org/pub_releases/2019-01/uota-dbb011819.php

Paper available at https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209981

 

Reference: 

Jaekel N, Jaekel J, Willard J, Leyendecker B (2019) No evidence for effects of Turkish immigrant children‘s bilingualism on executive functions. PLoS ONE 14(1): e0209981. https://doi.org/10.1371/journal.pone.0209981

 

Source: 

Topics: 

tags development: 

tags memworks: 

tags strategies: 

Air pollution exposure walking to school linked to slower growth of working memory

  • A large study has found higher levels of traffic-related air pollution, still within the EU safe limits, are associated with slower growth in working memory capacity in primary/elementary school children.

A Spanish study investigating the effects of traffic-related air pollution on children walking to school has found higher levels of particulate matter and black carbon were associated with decreased growth in working memory capacity. Working memory capacity grows during childhood (and tends to fall in old age).

The study involved 1,234 children aged 7-10, from 39 schools across the city of Barcelona. The children were tested four times over a year to establish their developmental trajectories in working memory and inattentiveness. Average particulate matter, black carbon, and nitrogen dioxide, were estimated for the children’s walking routes using standard measures.

None of the pollutants were associated with inattentiveness. The effect of NO2 on working memory was inconclusive. However, increased concentrations of particulate matter and black carbon were associated with a reduction in the annual growth of working memory of 4.6% and 3.9%, respectively. Boys were more affected than girls.

The study followed an earlier study showing that exposure to traffic-related pollutants in schools was associated with slower cognitive development. Research has previously shown that 20% of a child's daily dose of black carbon (which is directly related to traffic) is inhaled during urban commutes.

The finding emphasizes that even “short exposures to very high concentrations of pollutants can have a disproportionately high impact on health”, and this may be especially true for children, with their smaller lung capacity and higher breathing rate.

The researchers emphasize that the solution for parents is not to stop children walking to school, since those who commute by car or public transport are also exposed to the pollution. Rather, the aim should be to try and find (or make) less polluted, low-traffic paths to school.

https://www.eurekalert.org/pub_releases/2017-10/bifg-ape100517.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

Repeating aloud to another person boosts recall

  • The simple act of repeating something to another person helps you remember it, more than if you just repeated it to yourself.

A Canadian study involving French-speaking university students has found that repeating aloud, especially to another person, improves memory for words.

In the first experiment, 20 students read a series of words while wearing headphones that emitted white noise, in order to mask their own voices and eliminate auditory feedback. Four actions were compared:

  • repeating silently in their head
  • repeating silently while moving their lips
  • repeating aloud while looking at the screen
  • repeating aloud while looking at someone.

They were tested on their memory of the words after a distraction task. The memory test only required them to recognize whether or not the words had occurred previously.

There was a significant effect on memory. The order of the conditions matches the differences in memory, with memory worst in the first condition, and best in the last.

In the second experiment, 19 students went through the same process, except that the stimuli were pseudo-words. In this case, there was no memory difference between the conditions.

The effect is thought to be due to the benefits of motor sensory feedback, but the memory benefit of directing your words at a person rather than a screen suggests that such feedback goes beyond the obvious. Visual attention appears to be an important memory enhancer (no great surprise when we put it that way!).

Most of us have long ago learned that explaining something to someone really helps our own understanding (or demonstrates that we don’t in fact understand it!). This finding supports another, related, experience that most of us have had: the simple act of telling someone something helps our memory.

http://www.eurekalert.org/pub_releases/2015-10/uom-rat100615.php

Reference: 

Topics: 

tags memworks: 

tags strategies: 

Improve learning with co-occurring novelty

  • An animal study shows that following learning with a novel experience makes the learning stronger.
  • A human study shows that giving information positive associations improves your memory for future experiences with similar information.

We know that the neurotransmitter dopamine is involved in making strong memories. Now a mouse study helps us get more specific — and suggests how we can help ourselves learn.

The study, involving 120 mice, found that mice tasked with remembering where food had been hidden did better if they had been given a novel experience (exploring an unfamiliar floor surface) 30 minutes after being trained to remember the food location.

This memory improvement also occurred when the novel experience was replaced by the selective activation of dopamine-carrying neurons in the locus coeruleus that go to the hippocampus. The locus coeruleus is located in the brain stem and involved in several functions that affect emotion, anxiety levels, sleep patterns, and memory. The dopamine-carrying neurons in the locus coeruleus appear to be especially sensitive to environmental novelty.

In other words, if we’re given attention-grabbing experiences that trigger these LC neurons carrying dopamine to the hippocampus at around the time of learning, our memories will be stronger.

Now we already know that emotion helps memory, but what this new study tells us is that, as witness to the mice simply being given a new environment to explore, these dopamine-triggering experiences don’t have to be dramatic. It’s suggested that it could be as simple as playing a new video game during a quick break while studying for an exam, or playing tennis right after trying to memorize a big speech.

Remember that we’re designed to respond to novelty, to pay it more attention — and, it seems, that attention is extended to more mundane events that occur closely in time.

Emotionally positive situations boost memory for similar future events

In a similar vein, a human study has found that the benefits of reward extend forward in time.

In the study, volunteers were shown images from two categories (objects and animals), and were financially rewarded for one of these categories. As expected, they remembered images associated with a reward better. In a second session, however, they were shown new images of animals and objects without any reward. Participants still remembered the previously positively-associated category better.

Now, this doesn’t seem in any way surprising, but the interesting thing is that this benefit wasn’t seen immediately, but only after 24 hours — that is, after participants had slept and consolidated the learning.

Previous research has shown similar results when semantically related information has been paired with negative, that is, aversive stimuli.

https://www.eurekalert.org/pub_releases/2016-09/usmc-rim090716.php

http://www.eurekalert.org/pub_releases/2016-06/ibri-eps061516.php

Reference: 

Source: 

Topics: 

tags memworks: 

tags strategies: 

Digital media may be changing how you think

  • Reading from a screen may encourage users to focus on concrete details rather than more abstract thinking.

Four studies involving a total of more than 300 younger adults (20-24) have looked at information processing on different forms of media. They found that digital platforms such as tablets and laptops for reading may make you more inclined to focus on concrete details rather than interpreting information more abstractly.

As much as possible, the material was presented on the different media in identical format.

In the first study, 76 students were randomly assigned to complete the Behavior Identification Form on either an iPad or a print-out. The Form assesses an individual's current preference for concrete or abstract thinking. Respondents have to choose one of two descriptions for a particular behavior — e.g., for “making a list”, the choice of description is between “getting organized” or “writing things down”. The form presents 25 items.

There was a marked difference between those filling out the form on the iPad vs on a physical print-out, with non-digital users showing a significantly higher preference for abstract descriptions than digital users (mean of 18.56 vs 13.75).

In the other three studies, the digital format was always a PDF on a laptop. In the first of these, 81 students read a short story by David Sedaris, then answered 24 multichoice questions on it, of which half were abstract and half concrete. Digital readers scored significantly lower on abstract questions (48% vs 66%), and higher on concrete questions (73% vs 58%).

In the next study, 60 students studied a table of information about four, fictitious Japanese car models for two minutes, before being required to select the superior model. While one model was objectively superior in regard to the attributes and attribute rating, the amount of detail means (as previous research has shown) that those employing a top-down “gist” processing do better than those using a bottom-up, detail-oriented approach. On this problem, 66% of the non-digital readers correctly chose the superior model, compared to 43% of the digital readers.

In the final study, 119 students performed the same task as in the preceding study, but all viewed the table on a laptop. Before viewing the table, however, some were assigned to one of two priming activities: a high-level task aimed at activating more abstract thinking (thinking about why they might pursue a health goal), or a low-level task aimed at activating more concrete thinking (thinking about how to pursue the same goal).

Being primed to think more abstractly did seem to help these digital users, with 48% of this group correctly answering the car judgment problem, compared to only 25% of those given the concrete priming activity, and 30% of the control group.

I note that the performance of the control group is substantially below the performance of the digital users in the previous study, although there was no apparent change in the methodology. However, this was not noted or explained in the paper, so I don't know why this was. It does lead me not to put too much weight on this idea that priming can help.

However, the findings do support the view that reading on digital devices does encourage a more concrete style of thinking, reinforcing the idea that we are inclined to process information more shallowly when we read it from a screen.

Of course, this is, as the researchers point out, not an indictment. Sometimes, this is the best way to approach certain tasks. But what it does suggest is that we need to consider what sort of processing is desirable, and modify our strategy accordingly. For example, you may find it helpful to print out material that requires a high level of abstract thinking, particularly if your degree of expertise in the subject means that it carries a high cognitive load.

http://www.eurekalert.org/pub_releases/2016-05/dc-dmm050516.php

Reference: 

Kaufman, G., & Flanagan, M. (2016). High-Low Split : Divergent Cognitive Construal Levels Triggered by Digital and Non-digital Platforms. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1–5. doi:10.1145/2858036.2858550 http://dl.acm.org/citation.cfm?doid=2858036.2858550

Topics: 

tags memworks: 

tags strategies: 

tags study: 

How hard your brain works depends on the season

  • A small study shows that it's not only daily biological rhythms that affect brain activity, but longer seasonal ones also.

A sleep study involving 28 participants had them follow a controlled sleep/wake schedule for three weeks before staying in a sleep laboratory for 4.5 days, during which time they experienced a cycle of sleep deprivation and recovery in the absence of seasonal cues such as natural light, time information and social interaction. The same participants went through this entire procedure several times over some 18 months. Brain activity was assessed while participants undertook an n-back working memory task, and a task that tested sustained attention.

While performance on these tasks didn't change with the seasons, the amount of effort needed to accomplish them did. Brain activity involved in sustained attention (especially in the thalamus, amygdala and hippocampus) was highest in the summer and lowest in the winter. Brain activity associated with working memory (especially the pulvinar, insula, prefrontal and frontopolar regions), was higher in the fall and lower in the spring.

Seasonality, therefore, could be one factor in cognitive differences that occur for an individual tested at different times.

The finding is consistent with previous research showing seasonal variation in the levels and concentrations of certain compounds associated with mood (including dopamine and serotonin).

Participants were healthy young adults; it would be interesting to see if the same results are found in older adults. It's possible that the effects are greater.

http://www.scientificamerican.com/article/brain-activity-for-attention-and-memory-tasks-changes-with-the-seasons/

Reference: 

[4059] Meyer, C., Muto V., Jaspar M., Kussé C., Lambot E., Chellappa S. L., et al.
(2016).  Seasonality in human cognitive brain responses.
Proceedings of the National Academy of Sciences. 201518129.

Topics: 

tags lifestyle: 

tags memworks: 

Movie study confirms older people are more distractible

Idiosyncratic brain activity among older people watching a thriller-type movie adds to evidence that:

  • age may affect the ability to perceive and remember the order of events (explaining why older adults may find it harder to follow complex plots)
  • age affects the ability to focus attention and not be distracted
  • age affects the brain's connectivity — how well connected regions work together.

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).

While many studies have looked at how age changes brain function, the stimuli used have typically been quite simple. This thriller-type story provides more complex and naturalistic stimuli.

Younger adults' brains responded to the TV program in a very uniform way, while older adults showed much more idiosyncratic responses. The TV program (“Bang! You're dead”) has previously been shown to induce widespread synchronization of brain responses (such movies are, after all, designed to focus attention on specific people and objects; following along with the director is, in a manner of speaking, how we follow the plot). The synchronization seen here among younger adults may reflect the optimal response, attention focused on the most relevant stimulus. (There is much less synchronization when the stimuli are more everyday.)

The increasing asynchronization with age seen here has previously been linked to poorer comprehension and memory. In this study, there was a correlation between synchronization and measures of attentional control, such as fluid intelligence and reaction time variability. There was no correlation between synchronization and crystallized intelligence.

The greatest differences were seen in the brain regions controlling attention (the superior frontal lobe and the intraparietal sulcus) and language processing (the bilateral middle temporal gyrus and left inferior frontal gyrus).

The researchers accordingly suggested that the reason for the variability in brain patterns seen in older adults lies in their poorer attentional control — specifically, their top-down control (ability to focus) rather than bottom-up attentional capture. Attentional capture has previously been shown to be well preserved in old age.

Of course, it's not necessarily bad that a watcher doesn't rigidly follow the director's manipulation! The older adults may be showing more informed and cunning observation than the younger adults. However, previous studies have found that older adults watching a movie tend to vary more in where they draw an event boundary; those showing most variability in this regard were the least able to remember the sequence of events.

The current findings therefore support the idea that older adults may have increasing difficulty in understanding events — somthing which helps explain why some old people have increasing trouble following complex plots.

The findings also add to growing evidence that age affects functional connectivity (how well the brain works together).

It should be noted, however, that it is possible that there could also be cohort effects going on — that is, effects of education and life experience.

http://www.eurekalert.org/pub_releases/2015-08/uoc-ymt081415.php

Reference: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

Implementation plans help those with low working memory capacity

  • Implementation plans are a strategy for helping you remember your intended future actions.
  • College students with low WMC performed a prospective memory task at the same level as those with a higher WMC, but only when they used a simple implementation plan.

I've written at length about implementation plans in my book “Planning to Remember: How to Remember What You're Doing and What You Plan to Do”. Essentially, they're intentions you make in which you explicitly tie together your intended action with a specific situational cue (such as seeing a post box).

A new study looked at the benefits of using an implementation intention for those with low working memory capacity.

The study involved 100 college students, of whom half were instructed to form an implementation intention in the event-based prospective memory task. The task was in the context of a lexical decision task in which the student had to press a different key depending on whether a word or a pseudo-word was presented, and to press the spacebar when a waiting message appeared between each trial. However (and this is the prospective element), if they saw one of four cue words, they were to stop doing the lexical task and say aloud both the cue word and its associated target word. They were then given the four word pairs to learn.

After they had mastered the word pairs, students in the implementation intention group were also given various sentences to say aloud, of the form: “When I see the word _______ (hotel, eraser, thread, credit) while making a word decision, I will stop doing the lexical decision task and call out _____-______ (hotel-glass, eraser-pencil, thread-book, credit-card) to the experimenter during the waiting message.” They said each sentence (relating to each word pair) twice.

Both groups were given a 5-minute survey to fill out before beginning the trials. At the end of the trials, their working memory was assessed using both the Operation Span task and the Reading Span task.

Overall, as expected, the implementation intention group performed significantly better on the prospective memory task. Unlike other research, there was no significant effect of working memory capacity on prospective memory performance. But this is because other studies haven't used implementation intentions — among those who made no such implement plans, low working memory capacity did indeed negatively affect prospective memory performance. However, those with low working memory capacity did just as well as those with high WMC when they formed implementation intentions (in fact, they did slightly better).

The most probable benefit of the strategy is that it heightened sensitivity to the event cues, something which is of particular value to those with low working memory capacity, who by definition have poorer attentional control.

It should be noted that this was an attentionally demanding task — there is some evidence that working memory ability only relates to prospective memory ability when the prospective memory task requires a high amount of attentional demand. But what constitutes “attentionally demanding” varies depending on the individual.

Perhaps this bears on evidence suggesting that a U-shaped function might apply, with a certain level of cognitive ability needed to benefit from implementation intentions, while those above a certain level find them unnecessary. But again, this depends on how attentionally demanding the task is. We can all benefit from forming implementation intentions in very challenging situations. It should also be remembered that WMC is affected not only more permanently by age, but also more temporarily by stress, anxiety, and distraction.

Of course, this experiment framed the situation in a very short-term way, with the intentions only needing to be remembered for about 15 minutes. A more naturalistic study is needed to confirm the results.

Reference: 

Topics: 

tags memworks: 

Attention Differences

Attention differences between individuals and ages

Older news items (pre-2010) brought over from the old website

When less attention improves behavior

An intriguing finding from a new study with confabulating patients has found that, unlike with normal individuals, or indeed other patients with damaged prefrontal lobes who don’t confabulate, memory accuracy improves when attention is reduced. It appears that lack of attention during memory retrieval is not the reason for confabulation; instead the problem might lie in over-processing irrelevant information. Training such patients to double-check the accuracy of their memories may not therefore be useful; instead they should be trained not to give too much attention to events.

[595] Ciaramelli, E., Ghetti S., & Borsotti M.
(2009).  Divided attention during retrieval suppresses false recognition in confabulation.
Cortex. 45(2), 141 - 153.

http://www.eurekalert.org/pub_releases/2009-01/e-wla012109.php

Children's under-achievement could be down to poor working memory

A survey of over three thousand children has found that 10% of school children across all age ranges suffer from poor working memory seriously affecting their learning. However, poor working memory is rarely identified by teachers, who often describe children with this problem as inattentive or as having lower levels of intelligence. The researchers have developed a new tool, a combination of a checklist and computer programme called the Working Memory Rating Scale, that enables teachers to identify and assess children's memory capacity in the classroom from as early as four years old. The tool has already been piloted successfully in 35 schools across the UK, and is now widely available. It has been translated into ten foreign languages.
http://www.physorg.com/news123404466.html 
http://www.eurekalert.org/pub_releases/2008-02/du-cuc022608.php

Changes in brain, not age, determine one's ability to focus on task

It’s been established that one of the reasons why older adults may do less well on cognitive tasks is because they have greater difficulty in ignoring distractions, which impairs their concentration. But not all older people are afflicted by this. Some are as focused as young adults. An imaging study has now revealed a difference between the brains of those people who are good at focusing, and those who are poor. Those who have difficulty screening out distractions have less white matter in the frontal lobes. They activated neurons in the left frontal lobe as well as the right. Young people and high-functioning older adults tended to use only the right frontal lobe.

[1117] Colcombe, S. J., Kramer A. F., Erickson K. I., & Scalf P.
(2005).  The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans.
Psychology and Aging. 20(3), 363 - 375.

http://www.eurekalert.org/pub_releases/2005-10/uoia-cib102605.php

Memory loss in older adults due to distractions, not inability to focus

We know that older adults often have short-term memory problems, and this has been linked to problems with attention. An imaging study now provides evidence that these short-term memory problems are associated with an inability to filter out surrounding distractions, rather than problems with focusing attention. It’s been suggested that an inability to ignore distracting information may indeed be at the heart of many of the cognitive problems that accompany aging. It should be noted that this is not an inevitable effect of age — in the study, 6 of the 16 older adults involved had no problems with short-term memory or attention.

[383] Gazzaley, A., Cooney J. W., Rissman J., & D'Esposito M.
(2005).  Top-down suppression deficit underlies working memory impairment in normal aging.
Nat Neurosci. 8(10), 1298 - 1300.

http://www.eurekalert.org/pub_releases/2005-09/uoc--mli090805.php

Insight into the processes of 'positive' and 'negative' learners

An intriguing study of the electrical signals emanating from the brain has revealed two types of learners. A brainwave event called an "event-related potential" (ERP) is important in learning; a particular type of ERP called "error-related negativity" (ERN), is associated with activity in the anterior cingulate cortex. This region is activated during demanding cognitive tasks, and ERNs are typically more negative after participants make incorrect responses compared to correct choices. Unexpectedly, studies of this ERN found a difference between "positive" learners, who perform better at choosing the correct response than avoiding the wrong one, and "negative" learners, who learn better to avoid incorrect responses. The negative learners showed larger ERNs, suggesting that "these individuals are more affected by, and therefore learn more from, their errors.” Positive learners had larger ERNs when faced with high-conflict win/win decisions among two good options than during lose/lose decisions among two bad options, whereas negative learners showed the opposite pattern.

[818] Frank, M. J., Woroch B. S., & Curran T.
(2005).  Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases.
Neuron. 47(4), 495 - 501.

http://www.eurekalert.org/pub_releases/2005-08/cp-iit081205.php

Teen's ability to multi-task develops late in adolescence

A study involving adolescents between 9 and 20 years old has found that the ability to multi-task continues to develop through adolescence. The ability to use recall-guided action to remember single pieces of spatial information (such as looking at the location of a dot on a computer screen, then, after a delay, indicating where the dot had been) developed until ages 11 to 12, while the ability to remember multiple units of information in the correct sequence developed until ages 13 to 15. Tasks in which participants had to search for hidden items in a manner requiring a high level of multi-tasking and strategic thinking continued to develop until ages 16 to 17. "These findings have important implications for parents and teachers who might expect too much in the way of strategic or self-organized thinking, especially from older teenagers."

[547] Luciana, M., Conklin H. M., Hooper C. J., & Yarger R. S.
(2005).  The Development of Nonverbal Working Memory and Executive Control Processes in Adolescents.
Child Development. 76(3), 697 - 712.

http://www.eurekalert.org/pub_releases/2005-05/sfri-tat051205.php

Development of working memory with age

An imaging study of 20 healthy 8- to 30-year-olds has shed new light on the development of working memory. The study found that pre-adolescent children relied most heavily on the prefrontal and parietal regions of the brain during the working memory task; adolescents used those regions plus the anterior cingulate; and in adults, a third area of the brain, the medial temporal lobe, was brought in to support the functions of the other areas. Adults performed best. The results support the view that a person's ability to have voluntary control over behavior improves with age because with development, additional brain processes are used.

The findings were presented at the 2004 Annual Meeting of the Society for Neuroscience.

http://www.eurekalert.org/pub_releases/2004-10/uopm-dow102104.php

tags memworks: 

Pages

Subscribe to RSS - attention
Error | About memory

Error

The website encountered an unexpected error. Please try again later.