preschool child

Early development

Children’s understanding, and their use of memory and learning strategies, is a considerably more complex situation than most of us realize. To get some feeling for this complexity, let’s start by looking at a specific area of knowledge: mathematics.

Children's math understanding

Here’s a math problem:

Pete has 3 apples. Ann also has some apples. Pete and Ann have 9 apples altogether. How many apples does Ann have?

This seems pretty straightforward, right? How about this one:

Pete and Ann have 9 apples altogether. Three of these belong to Pete and the rest belong to Ann. How many apples does Ann have?

The same problem, phrased slightly differently. Would it surprise you to know that this version is more likely to be correctly answered by children than the first version?

Whether or not a child solves a math problem correctly is not simply a matter of whether he or she knows the math — the way the problem is worded plays a crucial part in determining whether the child understands the problem correctly. Slight (and to adult eyes, insignificant) differences in the wording of a problem have a striking effect on whether children can solve it.

Mathematics also provides a clear demonstration of the seemingly somewhat haphazard development in cognitive abilities. It’s not haphazard, of course, but it sometimes appears that way from the adult perspective. In math, understanding different properties of the same concept can take several years. For example, children’s understanding of addition and subtraction is not an all-or-none business; adding as combining is grasped by young children quite early, but it takes some 2 to 3 years at school to grasp the essential invariants of additive relations. Multiplicative relations are even harder, with children up to age 10 or so often having great difficulty with proportion, probability, area and division.

Neurological differences between children and adults

Part of the problems children have with math stems from developmental constraints — their brains simply aren’t ready for some concepts. A recent imaging study of young people (aged 8-19 years) engaged in mental arithmetic, found that on simple two-operand addition or subtraction problems (for which accuracy was comparable across age), older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. Younger subjects showed greater activation in the prefrontal cortex (including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex), suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of performance, and greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems.

In other words, the evidence suggests that the left inferior parietal cortex becomes increasingly specialized for mental arithmetic with practice, and this process is accompanied by a reduced need for memory and attentional resources.

Not just a matter of brain maturation

But this isn't the whole story. As the earlier example indicated, difficulties in understanding some concepts are often caused by the way the concepts are explained. This is why it’s so important to keep re-phrasing problems and ideas until you find one that “clicks”. Other difficulties are caused by the preconceptions the child brings with them — cultural practices, for example, can sometimes help and sometimes hinder learning.

Other domains: neurological differences between children and adults

What's true of mathematics is also true of other learning areas. When we teach children, we do need to consider developmental constraints, but recent studies suggest we may have over-estimated the importance of development.

In an intriguing imaging study, brain activity in children aged 7-10 and adults (average age 25 years) while doing various language tasks was compared. Six sub-regions in the left frontal and the left extrastriate cortex were identified as being significant. Both these areas are known to play a key role in language processing and are believed to undergo substantial development between childhood and adulthood.

Now comes the interesting part. The researchers attempted to determine whether these differences between children and adults were due to brain maturation or simply the result of slower and less accurate performance by children. By using information regarding each individual's performance on various tasks, they ended up with only two of the six sub-regions (one in the frontal cortex, one in the extrastriate cortex) showing differences that were age-related rather than performance-related (with the extrastriate region being more active in children than adults, while the frontal region was active in adults and not in children).

The researchers concluded that, yes, children do appear to use their brains differently than adults when successfully performing identical language tasks; however, although multiple regions appeared to be differentially active when comparing adults and children, many of those differences were due to performance discrepancies, not age-related maturation.

Childhood amnesia

Let's talk about childhood amnesia for a moment. "Childhood amnesia" is a term for what we all know -- we have very few memories of our early years. This is so familiar, you may never have considered why this should be so. But the reason is not in fact obvious. Freud speculated that we repressed those early memories (but Freud was hung up on repression); modern cognitive psychologists have considered immature memory processing skills may be to blame. This is surely true for the first months -- very young babies have extremely limited abilities at remembering anything for long periods of time (months), and research suggests that the dramatic brain maturation that typically occurs between 8 and 12 months is vital for long-term memory.

But an intriguing study (carried out by researchers at my old stomping ground: the University of Otago in New Zealand) has provided evidence that an important stumbling block in our remembrance of our early years is the child's grasp of language. If you don't have the words to describe what has happened, it seems that it is very difficult to encode it as a memory -- or at least, that it is very difficult to retrieve (before you leap on me with examples, let me add that noone is saying that every memory is encoded in words -- this is palpably not true).

This finding is supported by a recent study that found that language, in the form of specific kinds of sentences spoken aloud, helped 4-year-old children remember mirror image visual patterns.

The role of social interaction in memory development

Another study from my favorite university looked at the role mothers played in developing memory in their young children. The study distinguished between reminiscing (discussing shared experiences) and recounting (discussing unshared experiences). Children 40 months old and 58 months old were studied as they talked about past events with their mothers. It was found that mothers who provided more memory information during reminiscing and requested more memory information during recounting had children who reported more unique information about the events.

In general, parents seldom try to teach memory strategies directly to children, but children do learn strategies by observing and imitating what their parents do and this may in fact be a more effective means of teaching a child rather than by direct instruction.

But parents not only provide models of behavior; they also guide their children's behavior. The way they do this is likely to be influenced by their own beliefs about their children’s mnemonic abilities. If you don't believe your child can possibly remember something, you are unlikely to ask them to make the effort. But when parents ask 2 – 4 year olds to remind them to do something in the future, even 2 year olds remember to remind their parents of promised treats 80% of the time.

By 3 yrs old, children whose mothers typically asked questions about past events performed better on memory tasks than those children whose mothers only questioned them about present events. Observation of mothers as they taught their 4 year olds to sort toys, copy etch-a-sketch designs, and respond to questions regarding hypothetical situations found 3 interaction styles found that related to the child’s performance:

  • imperative-normative, in which mother gave little justification for requests or demands;
  • subjective, in which mother encouraged child to see his own behaviour from another’s point of view;
  • cognitive-rational, in which mother offered logical justifications for requests and demands.

Children whose mothers used the last two styles were more verbal and performed better on cognitive tasks.

A study of kindergarten and elementary school teachers found that children from classes where teachers frequently made strategy suggestions were better able to verbalize aspects of memory training and task performance. Although this made no difference for high achieving children, average and low achievers were more likely to continue using the trained strategy if they had teachers who frequently made strategy suggestions.

Conclusion

What lessons can we learn from all this?

First, we must note that there are indeed developmental constraints on children's capabilities that are rooted in physical changes in the brain. Some of these are simply a matter of time, but others are changes that require appropriate stimulation and training.

Secondly, the importance of language in enabling the child cannot be overestimated.

And thirdly, for children as with older adults, expectations about memory performance can reduce their capabilities. Supportive, directed assistance in developing memory and reasoning strategies can be very effective in helping even very young children.

References: 

  • Best, D.L. 1992. The role of social interaction in memory improvement. In D. Herrmann, H. Weingartner, A. Searleman & C. McEvoy (eds.) Memory Improvement: Implications for Memory Theory. New York: Springer-Verlag. pp 122-49.
  • Liston, C. & Kagan, J. 2002. Brain development: Memory enhancement in early childhood. Nature, 419, 896-896.
  • Reese, E. & Brown, N. 2000. Reminiscing and recounting in the preschool years. Applied Cognitive Psychology, 14 (1), 1-17.
  • Rivera, S.M., Reiss, A.L., Eckert, M.A. & Menon, V. 2005. Developmental Changes in Mental Arithmetic: Evidence for Increased Functional Specialization in the Left Inferior Parietal Cortex. Cerebral Cortex, 15 (11), 1779-1790.
  • Schlaggar, B.L., Brown, T.T., Lugar, H.M., Visscher, K.M., Miezin, F.M. & Petersen, S.E. 2002. Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476-9.
  • Vergnaud, G. 1997. The Nature of Mathematical Concepts. In T. Nunes & P. Bryant (Eds.), Learning and Teaching Mathematics: An International Perspectives (pp. 5-28). Eastern Sussex: Psychology Press Ltd.

Topics: 

tags study: 

tags development: 

tags strategies: 

Picture overload hurts preschooler's word learning

  • A study has found that having more than one illustration results in poorer word learning among pre-schoolers — but this can be mitigated if the reader draws the pre-schooler’s attention to each illustration.

When you're reading a picture book to a very young child, it's easy to think it's obvious what picture, or part of a picture, is being talked about. But you know what all the words mean. It's not so easy when some of the words are new to you, and the open pages have more than one picture. A recent study has looked at the effect on word learning of having one vs two illustrations on a 2-page open spread.

The study, in two experiments, involved the child being read to from a 10-page storybook, which included two novel objects, mentioned four times, but only incidentally. In the first experiment, 36 preschoolers (average age 3.5 years) were randomly assigned to one of three conditions:

  • one illustration (the illustration filled the page, with the text written as part of the illustration, and the opposing page blank)
  • two illustrations (each illustration filled its page, on opposing pages)
  • one large illustration (the page was twice the size of that found in the other conditions) — this was the control condition.

Children who were read stories with only one illustration at a time learned twice as many words as children who were read stories with two or more illustrations. There was no difference in reading time, or in the child’s enjoyment of the story.

In a follow-up experiment, 12 preschoolers were shown the two-illustration books only, but this time the reader used a simple hand swipe gesture to indicate the correct illustration before the page was read to them. With this help, the children learned best of all.

In fact, the rate of word learning in this last condition was comparable to that observed in other studies using techniques such as pointing or asking questions. Asking questions is decidedly better than simply reading without comment, and yet this simple gesture was enough to match that level of learning.

Other studies have shown that various distractions added to picture books, like flaps to lift, reduce learning. All this is best understood in terms of cognitive load. The most interesting thing about this study is that it took so little to ameliorate the extra load imposed by the two illustrations.

https://www.eurekalert.org/pub_releases/2017-06/uos-poh063017.php

https://www.eurekalert.org/pub_releases/2017-07/w-tno071217.php

Also see https://blogs.sussex.ac.uk/psychology/2016/10/24/how-storybook-illustrat... for a blog post by one of the researchers

Reference: 

Source: 

Topics: 

tags strategies: 

tags study: 

tags development: 

tags memworks: 

Is it really better to read print books to your toddler?

  • A comparison of non-interactive electronic books and their print counterparts has found that toddlers learned more from the electronic books, but this was accounted for by their greater attention and engagement.

A new issue for parents to stress over is the question of whether reading digital books with your toddler or preschooler is worse than reading traditional print books. Help on this complicated question comes from a new study involving 102 toddlers aged 17 to 26 months, whose parents were randomly assigned to read two commercially available electronic books or two print books with identical content with their toddler (this was achieved by printing out screenshots of the electronic books).

The books included familiar farm animals (duck, horse, sheep, cow) and also wild animals (koala, crocodile, zebra, and lion), some of which were new to the children). After reading, the children were asked to identify three of the familiar animals and three of the unfamiliar.

The electronic books included background music, animation and sound effects for each page as well as an automatic voiceover that read the text aloud to the child, but there were no actions or hotspots for extra features.

Compared to those who read the print versions, toddlers who read the electronic books:

  • paid more attention
  • made themselves more available for story time
  • participated more
  • commented more about the content.

While parents tended to point at the print book more often, there was no difference between the books in the amount they talked with their children about the story. However, parent–child pairs spent almost twice as much time reading the electronic books than the print books.

Overall, children did significantly better on the learning task when they had read the electronic book. However, analysis showed that the benefit was accounted for by two variables:

  • attention
  • availability for reading.

The researchers note, however, that this may not be true of all electronic books. Previous research has suggested that highly interactive electronic books may distract from learning.

Additionally, the simplicity of electronic books for toddlers may be much better. Books for preschoolers, on the other hand, are more narrative, requiring readers to integrate content across pages. In this circumstance, electronic books may be more distracting.

https://www.eurekalert.org/pub_releases/2017-06/f-sto062117.php

Reference: 

tags development: 

Topics: 

tags strategies: 

New hope for autistic children who never learn to speak

A recent report from Autistica estimates that nearly a quarter (24%) of children with autism are non-verbal or minimally verbal — problems that can persist into adulthood.

A review of over 200 published papers and more than 60 different intervention studies has now concluded that:

05/2013

Mynd: 

tags strategies: 

tags development: 

tags problems: 

Interactive robot trains kids with autism

A humanoid robot has been designed, and shows promise, for teaching joint attention to children with ASD. Robots are particularly appealing to children, and even more so to those with ASD.

http://www.futurity.org/health-medicine/interactive-robot-trains-kids-with-autism/

04/2013

Mynd: 

tags problems: 

tags development: 

Kids with autism mimic ‘more efficiently’

We say so blithely that children learn by copying, but a recent study comparing autistic children and normally-developing ones shows there’s more to this than is obvious.

04/2013

Mynd: 

tags memworks: 

tags problems: 

tags strategies: 

tags development: 

Praise the job not the child

In the first study to analyze parent praise in a real-world setting, it’s been found that the kind of praise parents give their babies and toddlers influences the child’s motivation later on, and plays a role in children’s beliefs about themselves and their desire to take on challenges five years later.

03/2013

Mynd: 

tags development: 

tags: 

Math anxiety starts before school, impacts math achievement

"The general consensus is that math anxiety doesn't affect children much before fourth grade.” New research contests that.

Study 1: found many first grade students do experience negative feelings and worry related to math. This math anxiety negatively affects their math performance when it comes to solving math problems in standard arithmetic notation.

Study 2: found that second grade math anxiety affected second grade computations and math applications. Additionally, children with higher levels of math anxiety in second grade learned less math in third grade.

03/2013

Mynd: 

tags study: 

tags development: 

tags memworks: 

Children learn iconic signs more easily and quickly

December, 2012

A study of deaf toddlers suggests that we can support children’s acquisition of language by providing physical links to words, through the use of gestures, facial expressions, and tone.

The relative ease with which children acquire language has produced much debate and theory, mirroring the similar quantity of debate and theory over how we evolved language. One theory of language evolution is that it began with gesture. A recent study looking at how deaf children learn sign language might perhaps be taken as partial support for this theory, and may also have wider implications for how children acquire language and how we can best support them.

The study, involving 31 deaf toddlers, looked at 89 specific signs understood and produced by the children. It was found that both younger (11-20 months) and older (21-30 months) toddlers understood and produced more signs that were iconic than signs that were less iconic. This benefit seemed to be greater for the older toddlers, supporting the idea that a certain amount of experience and/or cognitive development is needed to make the link between action and meaning.

Surprisingly, the benefits of iconicity did not seem to depend on how familiar, phonologically complex, or imageable the words were.

In contrast to spoken language, a high proportion of signs are iconic, that is, related to the concept being expressed (such as, bringing the hand to the mouth to indicate ‘eat’). Nevertheless, if iconicity is important in sign language, it is surely also important in spoken languages. This is supported by the role of gesture in speech.

The researchers suggest that iconic links between our perceptual-motor experience of the world and the form of a sign may provide an imitation-based mechanism that supports early sign acquisition, and that this might also apply to spoken language — with gestures, tone of voice, inflection, and facial expression helping make the link between words and their meanings less arbitrary.

This suggests that we can support children’s acquisition of language by providing and emphasizing such ‘scaffolding’.

Reference: 

Source: 

tags development: 

Topics: 

tags strategies: 

tags memworks: 

Sensory therapy contraindicated for autism

December, 2012

A review has concluded that there is no evidence that sensory integration therapy helps autistic children.

A review of 25 major studies investigating the value of sensory integration therapy (SIT) for autistic children has concluded that this most popular of therapies has no scientific support.

Only three of the 25 studies found benefits from SIT, and these three all had serious methodological flaws. Eight of the studies found mixed results, while 14 studies reported no benefits. Many of the reviewed studies had serious methodological flaws.

It has been suggested that SIT may even be harmful, in that it may lead to an increase in undesirable behavior. Regardless, by taking up time that could otherwise be spent on effective therapies, the use of SIT is not recommended.

The only scientifically valid treatment and intervention for individuals on the autism spectrum is said to be applied behavior analysis, in which, unfortunately, few are trained. With applied behavior analysis, the therapist teaches children age-appropriate skills and offers systematic, repetitious positive reinforcement for desired behaviors.

Reference: 

Source: 

tags development: 

tags problems: 

Topics: 

Pages

Subscribe to RSS - preschool child