preschool child

Sleep and cognition in children

A U.S. survey provides evidence that both children and adolescents tend to be getting less sleep than needed.

Depression, lower self-esteem, and lower grades, have all been found to be correlated with sleep deprivation in middle-school children.

Sleep disturbance in infants and young children has also been found to be associated with lower cognitive performance.

We all know that lack of sleep makes us more prone to attentional failures, more likely to make mistakes, makes new information harder to learn, old information harder to retrieve ... We all know that, right? And yet, so many of us still go to bed too late to get the sleep we need to function well. Of course, some of us go to sleep early enough, we just can’t get to sleep fast enough, or are prone to waking in the night. (Personally, I can count the times I’ve slept through the night without waking in the last fifteen years on my fingers).

I talk about the effect of sleep on memory elsewhere; I want to talk here about a sleep problem that we don’t tend to think about so much — the sleep deficit children are running.

A survey commissioned by the National Sleep Foundation found that 3-to-6-year-olds in the U.S. get about 10.4 hours sleep nightly, while experts recommend 11 to 13 hours. 1st graders to 5th graders who should be getting 10 to 11 hours are averaging just 9.5 hours.

And a study of middle-school children (11 to 14 year olds) found a direct correlation between sleep deprivation and depression, lower self-esteem, and lower grades. "The fewer hours of sleep that children got, the more depressed they were, the higher number of depressive symptoms [they had], and the lower their self-esteem and the lower their grades."

The second largest growth spurt occurs during these years (usually 10-14 for girls; 11-16 for boys), so this is a time when a lot of sleep is needed. But it’s also a time when children become more capable and more independent; when they’re likely to start taking on a lot more activities, work harder and longer, and are monitored less by their parents and caregivers. So ... it’s not surprising, when we stop and think about it, that a lot of these children are starting to pick up the bad habits of their parents — not getting enough sleep.

Which also points, in part, to the solution: if you’re a parent, remember that your children are, as always, modeling themselves on you. And sleep habits usually reflect a household pattern. If you’re a teacher, remember you need to educate the family, not just the child.

The National Institutes of Health (NIH) have identified adolescents and young adults (ages 12 to 25 years) as a population at high risk for problem sleepiness based on "evidence that the prevalence of problem sleepiness is high and increasing with particularly serious consequences."

Sleep disturbance in infants and young children has also been found to be associated with lower cognitive performance. Previous studies have looked at the severe end of the spectrum of sleep disorders — obstructive sleep apnea. More alarmingly, a new study of 205 5-year-old children found even mild sleep-disordered breathing symptoms (frequent snoring, loud or noisy breathing during sleep) were associated with poorer executive function and memory skills and lower general intelligence.

Before you panic, please note that some 30% of the participants had SBD symptoms, so it’s hardly uncommon (although there may have been a bias towards children with these symptoms; it does seem surprisingly high). You might also like to note that I personally had a blocked nose my entire childhood (always breathed through my mouth, and yes, of course I snored) and it didn’t stop me being top of the class, so ...

Nor is the research yet developed enough to know precisely what the connection is between SBD and cognitive impairment. However, it does seem that, if something can be done about the problem, it is probably worth doing (in my case, taking me off dairy would probably have fixed the problem! but of course noone had any idea of such factors back then).

Here’s a few links that may be of interest to parents and teachers:

ScienCentral article on the middle-school study:
http://sciencentral.com/articles/view.htm3?article_id=218392389

The NSF Sleep poll
http://www.sleepfoundation.org/article/press-release/national-sleep-foundation-2013-international-bedroom-poll 

a look at the school start times debate (I find this fairly amazing actually, because here in New Zealand, our children usually start school around 9am; the thought of kids starting school at 7.30 sends me into a spin!)
http://www.sleepfoundation.org/article/sleep-topics/school-start-time-and-sleep

The National Sleep Foundation also has a site for children who want to learn about sleep and healthy sleep habits: www.SleepforKids.org For children from 7 up; with educational games and activities, as well as a downloadable copy of NSF’s new Sleep Diary designed especially for children.

This article originally appeared in the November 2004 newsletter.

Suzuki & Montessori

Some comments on the commonalities between the Suzuki approach to learning music and the Montessori approach to education.

My sons have both been in Montessori since they were three (they are now 8 and nearly 11, respectively). My elder son started learning the violin from a Suzuki teacher when he was around five, and now learns the piano (again, from a Suzuki teacher). My younger son has been learning the violin for the last two years. Over the years I have been somewhat intrigued by the number of parents who, like me, are both Montessori and Suzuki parents.

It is perhaps indicative that we talk about Montessori parents, and Suzuki parents. It is our children who are in these systems, why do we include the parents? I imagine it’s because both philosophies require the parent to be involved, to understand what’s involved in the approach, and do their part.

Why do these approaches go hand-in-hand? Well, they share a number of similarities.

Both Suzuki and Montessori respect the child, and feel that learning must be approached from where the child is, not where we think they should be.

Both believe in leading by example — not by telling (haranguing) the child to do what the adult thinks best, but by providing an example of the behavior the adult wants the child to copy.

Both provide the child with an orderliness that permits the child to learn. In the Montessori classroom this is expressed in the orderliness of the materials — everything has a place, every task has a sequence. In Suzuki, this is expressed through the set order of music pieces expressly designed to take the student step by step through the techniques necessary to learn the relevant skills.

Both philosophies stress the importance of providing the right environment to nurture the child’s developing character and self-image. Both feel that individuals learn at their own pace, not according to some standard drawn up by educators. In both methods, age does not determine what work the child is doing — they do what is appropriate for their skill level, not their age.

Both Montessori and Suzuki appreciate that repetition is the key to mastery.

Both philosophies believe that education is about bringing out potential, rather than “instructing”. The adult is a director rather than a dictator.

References: 

Thompson, Linda K.: Montessori and Suzuki. The NAMTA Journal, v 15 (2).

The Montessori method

Many parents enrol their children in Montessori preschools because they are an "educational" way of getting childminding - if you're going to put your child in a creche, why not put them in a preschool instead - or because they want to give their child a "head start" on education. Quality preschool education is a rarity and Montessori are certainly leaders in the field.

My own children have been involved with Montessori since they were three.Like many parents, I came to Montessori education more by accident than design, and my belief in the system has grown over the years. When a Montessori primary (elementary) class opened in time for my older child, I was very pleased.

It is probably fair to say that parents send their children to a Montessori preschool because they provide a quality preschool education, but they send their children to Montessori schools because they have become converts to the Montessori approach and/or because they have deep dissatisfactions with the traditional education system.

I admit freely that both are true of me. Would I have been so keen on sending my son to a Montessori primary if I had been happier at school myself (rather than bored out of my tree)? But my sons' involvement with Montessori has only deepened my commitment and appreciation of its approach.

It is interesting that Montessori education seems particularly attractive to parents of sons. The preponderance of boys in my sons' classes may well be an anomaly, but I observe that those children who come to us at an older age, having had problems in mainstream (traditional) schools, are invariably boys. It is a truism today that the traditional education system favors girls. The Montessori environment and program doesn't penalize boys for their difficulty in sitting still; their later maturing; their need to touch and manipulate objects. The Montessori program is based around the individual. Thus, for example, the student determines when they'll do maths and for how long. This doesn't mean the child can choose never to do maths, merely that the child has control within the limits set by the teacher.

One of the most fundamental, and misunderstood, tenet of the Montessori approach is encapsulated in the phrase "Follow the child".

"Follow the child" does not mean let the child do what he wants. It is simply an acknowledgment that the child has her own pattern - that we need to take into account where the child is at, rather than impose our idea of what the child should learn now. Montessori saw the child's development as passing through four developmental phases, with a pattern of intense growth reaching a peak and then declining, within each phase.

Each of these developmental phases is marked by:

  • a specific developmental goal
  • a readily identifiable direction to reach that goal
  • specific sensitivities that facilitate reaching that goal

This scenario is the basis for the Montessori structure of 3-6, 6-9, 9-12 classes. The age-bands reflect the developmental phases, and the program and environment provided for that phase reflects the sensitivities characteristic of that phase.

The color of these triangles reflects the similarity between, for example, the developmental phases at 0-6 and 12-18, a similarity that has been remarked on by many parents and teachers of adolescents.

Maria Montessori was ahead of her time in recognizing that babies were active learners, and it is also instructive to note that she saw development continuing to age 24. However, for the most part, Montessori education has concentrated on the periods 3-6 (preschool) and 6-12, with particular emphasis on the preschool years. This emphasis no doubt reflects the much greater void that existed in preschool education.

It is also partly an historical artifact - when Montessori decided (on the basis of her amazing success with so-called "uneducable" children) to try her methods on normal children, she had no opportunity to work with school-age children, as they were already in school. However, an opportunity arose to have custody of children below school age in a reclaimed public-housing project in Rome. Hence, quite by accident, Montessori's first successes were with preschool children. The success of her methods was of course, also much more obvious with this group of children, since few children below the age of six received any sort of education.

You can now read Maria Montessori's 1909 book online. There is an illustrated edition available at http://digital.library.upenn.edu/women/montessori/method/method.html

References: 

Lillard, Paula Polk. 1996. Montessori Today: A comprehensive approach to education from birth to adulthood. NY: Schocken Books. Toronto: Random House.

Are children really so much better at learning a second language?

Most people believe that an adult learner can't hope to replicate the fluency of someone who learned another language in childhood. And certainly there is research to support this. However, people tend to confuse these findings - that the age of acquisition affects your representation of grammar - with the idea that children can learn words vastly quicker than adults. This is not true. Adults have a number of advantages over children:

  • they usually have more and practiced strategies available to them,
  • they have a wider vocabulary in their native language (which makes it easier to find similarities between languages),
  • they have (for a while) a greater working memory capacity,
  • they are more likely to have experience of other languages, and of language learning.

For all these reasons, adults can usually learn more words faster than children.

Part of the reason for the belief is that children seem to learn their native language "by magic". While there is certainly something magical about the way they pick up grammar, their learning of new words doesn't come under the same category. In fact, children are quite slow at learning new words, learning on average:

12 - 16 months: 0.3 words/day

16 - 23 months: 0.8 words/day

23 - 30 months: 1.6 words/day

30 mths - 6 yrs: 3.6 words/day

6 yrs - 8 yrs: 6.6 words/day

8 yrs - 10 yrs: 12.1 words/day

(from Paul Bloom's (2000) "How Children Learn the Meanings of Words")

Original language can be completely forgotten

The following research is also interesting, since it exposes another cherished myth. A study1 of adults who were born in Korea but adopted by French families in childhood, found not only that they had no conscious memory of Korean, but that imaging showed no difference in brain activation when they heard Korean compared to any other unknown foreign language (activation patterns were different when they heard French).

I don't, however, know the age of the children when they were adopted. It would also be interesting to know whether such children would learn their original language with greater facility - this would imply that present imaging techniques are insufficiently subtle to pick up some differences.

References: 
  • Pallier, C., Dehaene, S., Poline, J.-B., LeBihan, D., Argenti, A.-M., Dupoux, E. & Mehler, J. 2003. Brain Imaging of Language Plasticity in Adopted Adults: Can a Second Language Replace the First? Cerebral Cortex, 13 (2), 155-161.

Music and language

Some of the attributes of music are particularly memorable, and can be used to assist learning.

Music and language are both important in helping humans form large social groups, and one can argue that they co-evolved on the back of this function*.

There is growing evidence that the same brain structures are involved in music and language processing.

A rare disorder suggests a genetic link between social skills, language skills, and musical skills.

These connections between music and language processing support recent evidence that music training can improve children's language skills.

The role of melody in helping recall

The most obvious connection between language and music is that music can be used to help us remember words. It has been convincingly shown that words are better recalled when they are learned as a song rather than speech - in particular conditions.

Melody is what is important. Rhythm is obviously part of that. We are all aware of the power of rhythm in helping make something memorable. But melody, it seems, has quite a lot of attributes, apart from rhythm, that we can use as cues to help our recall. And what seems to be crucial is the simplicity and predictability of the melody.

But the connection between language and music is much more profound than this.

The evolution of language

One of my favorite books is Robin Dunbar's Grooming, gossip and the evolution of language . In it he moves on from the fact that monkeys and apes are intensely social and that grooming each other is a major social bonding mechanism, to the theory that in humans language (particularly the sort of social language we call gossip) has taken the place of grooming. The size of human social groups, he argues cogently, was able to increase (to our species' benefit) because of the advantages language has over grooming. For example, it's hard to groom more than one at a time, but you can talk to several at once.

Language, music, and emotion

I mention this now because he also suggests that both music and language helped humans knit together in social groups, and maybe music was first. We are all familiar with the extraordinary power of music to not only evoke emotion, but also to bind us into a group. Think of your feelings at times of group singing - the singing of the national anthem, singing 'Auld Lang Syne' at New Year's Eve, singing in church, campfire singing, carol singing ... fill in your own experience.

Dunbar also observes that, while skilled oratory has its place of course, language is fairly inadequate at the emotional level - something we all have occasion to notice when we wish to offer comfort and support to those in emotional pain. At times like these, we tend to fall back on the tried and true methods of our forebears - touch.

So, while language is unrivalled in its ability to convey "the facts", there is a point at which it fails. At this point, other facilities need to step in. At an individual level, we have touch, and "body language". At the social level, we have music.

Language and music then, may well have developed together, not entirely independently.More evidence for this comes from recent neurological studies.

The neural substrates of language and music

Language is a very important and complex function in humans, and unsurprisingly it involves a number of brain regions. The most famous is Broca's area. Recent research into neurological aspects of music have held some surprises. Imaging studies have revealed that, while the same area (the planum temporale) was active in all subjects listening to music, in non-musicians it was the right planum temporale that was most active, while in musicians the left side dominated. The left planum temporale is thought to control language processing. It has been suggested that musicians process music as a language. This left-brain activity was most pronounced in people who had started musical training at an early age.

Moreover, several studies have now demonstrated that there are significant differences in the distribution of gray matter in the brain between professional musicians trained at an early age and non-musicians. In particular, musicians have an increased volume of gray matter in Broca's area. The extent of this increase appears to depend on the number of years devoted to musical training. There also appears to be a very significant increase in the amount of gray matter in the part of the auditory cortex called the Heschl's gyrus (also involved in the categorical perception of speech sounds).

An imaging study1 investigating the neural correlates of music processing found that " unexpected musical events" activated the areas of Broca and Wernicke, the superior temporal sulcus, Heschl's gyrus, both planum polare and planum temporale, as well as the anterior superior insular cortices. The important thing about this is that, while some of those regions were already known to be involved in music processing, the cortical network comprising all these structures has up to now been thought to be domain-specific for language processing.

People are sensitive to acoustic cues used to distinguish both different musicians and different speakers

Another study2 has found that people remember music in the same way that they remember speech. Both musicians and non-musicians were found to be equally accurate in distinguishing changes in musical sequences, when those changes were in the length and loudness of certain tones. This discrimination appeared to also be within the capabilities of ten-month-old babies, arguing that the facility is built into us, and does not require training.

These acoustic characteristics are what make two musicians sound different when they are playing the same music, and make two speakers sound different when they are saying the same sentence.

So, if this facility is innate, what do our genes tell us?

Williams syndrome

Williams syndrome is a rare genetic disorder. Those with this syndrome have characteristic facial and physical features, certain cardiovascular problems and mild to moderate mental retardation.

They are also markedly social, and have greater language capabilities than you would expect from their general cognitive ability. They score significantly higher on tests measuring behavior in social situations, including their ability to remember names and faces, eagerness to please others, empathy with others' emotions and tendency to approach strangers.

This connection, between sociability, language skills, and memory for names and faces, is what makes Williams syndrome interesting in this context. And of course, the final characteristic: an extraordinary connection with music
(see http://www.the-scientist.com/yr2001/nov/research_011126.html )

Mozart effect

A Canadian study is now underway to look at whether musical training gives children an edge over non-musical counterparts in verbal and writing skills (as well as perhaps giving the elderly an edge in preserving cognitive function for as long as possible). In view of the factors discussed here, the idea that music training benefits verbal skills is certainly plausible. I discuss this in more detail in my discussion of the much-hyped Mozart effect.

 

* I'm sorry, I know this is expressed somewhat clumsily. More colloquially, many people would say they co-evolved for this purpose. But functions don't evolve purposively - the eye didn't evolve because one day an organism thought it would be a really good idea to be able to see. We know this, but it is ... oh so much easier ... to talk about evolution as if it was purposeful. Unfortunately, what starts simply because as a sloppy shorthand way of saying something, becomes how people think of it. I don't want to perpetuate this myself, so, I'm sorry, we have to go with the clumsy.

References: 
  1. Dunbar, R. 1996. Grooming, gossip, and the evolution of language. Cambridge, Mass.: Harvard University Press.
  2. Wallace, W.T. 1994. Memory for music: effect of melody on recall of text. Journal of Experimental Psychology: Learning, Memory & Cognition, 20, 1471-85.
  3. 1. Koelsch, S., Gunter, T.C., von Cramon, D.Y., Zysset, S., Lohmann, G. & Friederici, A.D. 2002. Bach Speaks: A Cortical "Language-Network" Serves the Processing of Music, NeuroImage, 17(2), 956-966.
  4. 2. Palmer, C.,Jungers, M.K. & Jusczyk, P.W. 2001. Episodic Memory for Musical Prosody. Journal of Memory and Language, 45, 526-545. http://www.eurekalert.org/pub_releases/2002-01/osu-lrn010902.htm

Early development

Children’s understanding, and their use of memory and learning strategies, is a considerably more complex situation than most of us realize. To get some feeling for this complexity, let’s start by looking at a specific area of knowledge: mathematics.

Children's math understanding

Here’s a math problem:

Pete has 3 apples. Ann also has some apples. Pete and Ann have 9 apples altogether. How many apples does Ann have?

This seems pretty straightforward, right? How about this one:

Pete and Ann have 9 apples altogether. Three of these belong to Pete and the rest belong to Ann. How many apples does Ann have?

The same problem, phrased slightly differently. Would it surprise you to know that this version is more likely to be correctly answered by children than the first version?

Whether or not a child solves a math problem correctly is not simply a matter of whether he or she knows the math — the way the problem is worded plays a crucial part in determining whether the child understands the problem correctly. Slight (and to adult eyes, insignificant) differences in the wording of a problem have a striking effect on whether children can solve it.

Mathematics also provides a clear demonstration of the seemingly somewhat haphazard development in cognitive abilities. It’s not haphazard, of course, but it sometimes appears that way from the adult perspective. In math, understanding different properties of the same concept can take several years. For example, children’s understanding of addition and subtraction is not an all-or-none business; adding as combining is grasped by young children quite early, but it takes some 2 to 3 years at school to grasp the essential invariants of additive relations. Multiplicative relations are even harder, with children up to age 10 or so often having great difficulty with proportion, probability, area and division.

Neurological differences between children and adults

Part of the problems children have with math stems from developmental constraints — their brains simply aren’t ready for some concepts. A recent imaging study of young people (aged 8-19 years) engaged in mental arithmetic, found that on simple two-operand addition or subtraction problems (for which accuracy was comparable across age), older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. Younger subjects showed greater activation in the prefrontal cortex (including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex), suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of performance, and greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems.

In other words, the evidence suggests that the left inferior parietal cortex becomes increasingly specialized for mental arithmetic with practice, and this process is accompanied by a reduced need for memory and attentional resources.

Not just a matter of brain maturation

But this isn't the whole story. As the earlier example indicated, difficulties in understanding some concepts are often caused by the way the concepts are explained. This is why it’s so important to keep re-phrasing problems and ideas until you find one that “clicks”. Other difficulties are caused by the preconceptions the child brings with them — cultural practices, for example, can sometimes help and sometimes hinder learning.

Other domains: neurological differences between children and adults

What's true of mathematics is also true of other learning areas. When we teach children, we do need to consider developmental constraints, but recent studies suggest we may have over-estimated the importance of development.

In an intriguing imaging study, brain activity in children aged 7-10 and adults (average age 25 years) while doing various language tasks was compared. Six sub-regions in the left frontal and the left extrastriate cortex were identified as being significant. Both these areas are known to play a key role in language processing and are believed to undergo substantial development between childhood and adulthood.

Now comes the interesting part. The researchers attempted to determine whether these differences between children and adults were due to brain maturation or simply the result of slower and less accurate performance by children. By using information regarding each individual's performance on various tasks, they ended up with only two of the six sub-regions (one in the frontal cortex, one in the extrastriate cortex) showing differences that were age-related rather than performance-related (with the extrastriate region being more active in children than adults, while the frontal region was active in adults and not in children).

The researchers concluded that, yes, children do appear to use their brains differently than adults when successfully performing identical language tasks; however, although multiple regions appeared to be differentially active when comparing adults and children, many of those differences were due to performance discrepancies, not age-related maturation.

Childhood amnesia

Let's talk about childhood amnesia for a moment. "Childhood amnesia" is a term for what we all know -- we have very few memories of our early years. This is so familiar, you may never have considered why this should be so. But the reason is not in fact obvious. Freud speculated that we repressed those early memories (but Freud was hung up on repression); modern cognitive psychologists have considered immature memory processing skills may be to blame. This is surely true for the first months -- very young babies have extremely limited abilities at remembering anything for long periods of time (months), and research suggests that the dramatic brain maturation that typically occurs between 8 and 12 months is vital for long-term memory.

But an intriguing study (carried out by researchers at my old stomping ground: the University of Otago in New Zealand) has provided evidence that an important stumbling block in our remembrance of our early years is the child's grasp of language. If you don't have the words to describe what has happened, it seems that it is very difficult to encode it as a memory -- or at least, that it is very difficult to retrieve (before you leap on me with examples, let me add that noone is saying that every memory is encoded in words -- this is palpably not true).

This finding is supported by a recent study that found that language, in the form of specific kinds of sentences spoken aloud, helped 4-year-old children remember mirror image visual patterns.

The role of social interaction in memory development

Another study from my favorite university looked at the role mothers played in developing memory in their young children. The study distinguished between reminiscing (discussing shared experiences) and recounting (discussing unshared experiences). Children 40 months old and 58 months old were studied as they talked about past events with their mothers. It was found that mothers who provided more memory information during reminiscing and requested more memory information during recounting had children who reported more unique information about the events.

In general, parents seldom try to teach memory strategies directly to children, but children do learn strategies by observing and imitating what their parents do and this may in fact be a more effective means of teaching a child rather than by direct instruction.

But parents not only provide models of behavior; they also guide their children's behavior. The way they do this is likely to be influenced by their own beliefs about their children’s mnemonic abilities. If you don't believe your child can possibly remember something, you are unlikely to ask them to make the effort. But when parents ask 2 – 4 year olds to remind them to do something in the future, even 2 year olds remember to remind their parents of promised treats 80% of the time.

By 3 yrs old, children whose mothers typically asked questions about past events performed better on memory tasks than those children whose mothers only questioned them about present events. Observation of mothers as they taught their 4 year olds to sort toys, copy etch-a-sketch designs, and respond to questions regarding hypothetical situations found 3 interaction styles found that related to the child’s performance:

  • imperative-normative, in which mother gave little justification for requests or demands;
  • subjective, in which mother encouraged child to see his own behaviour from another’s point of view;
  • cognitive-rational, in which mother offered logical justifications for requests and demands.

Children whose mothers used the last two styles were more verbal and performed better on cognitive tasks.

A study of kindergarten and elementary school teachers found that children from classes where teachers frequently made strategy suggestions were better able to verbalize aspects of memory training and task performance. Although this made no difference for high achieving children, average and low achievers were more likely to continue using the trained strategy if they had teachers who frequently made strategy suggestions.

Conclusion

What lessons can we learn from all this?

First, we must note that there are indeed developmental constraints on children's capabilities that are rooted in physical changes in the brain. Some of these are simply a matter of time, but others are changes that require appropriate stimulation and training.

Secondly, the importance of language in enabling the child cannot be overestimated.

And thirdly, for children as with older adults, expectations about memory performance can reduce their capabilities. Supportive, directed assistance in developing memory and reasoning strategies can be very effective in helping even very young children.

References: 
  • Best, D.L. 1992. The role of social interaction in memory improvement. In D. Herrmann, H. Weingartner, A. Searleman & C. McEvoy (eds.) Memory Improvement: Implications for Memory Theory. New York: Springer-Verlag. pp 122-49.
  • Liston, C. & Kagan, J. 2002. Brain development: Memory enhancement in early childhood. Nature, 419, 896-896.
  • Reese, E. & Brown, N. 2000. Reminiscing and recounting in the preschool years. Applied Cognitive Psychology, 14 (1), 1-17.
  • Rivera, S.M., Reiss, A.L., Eckert, M.A. & Menon, V. 2005. Developmental Changes in Mental Arithmetic: Evidence for Increased Functional Specialization in the Left Inferior Parietal Cortex. Cerebral Cortex, 15 (11), 1779-1790.
  • Schlaggar, B.L., Brown, T.T., Lugar, H.M., Visscher, K.M., Miezin, F.M. & Petersen, S.E. 2002. Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476-9.
  • Vergnaud, G. 1997. The Nature of Mathematical Concepts. In T. Nunes & P. Bryant (Eds.), Learning and Teaching Mathematics: An International Perspectives (pp. 5-28). Eastern Sussex: Psychology Press Ltd.

New hope for autistic children who never learn to speak

autistic toddler stacking cans

A recent report from Autistica estimates that nearly a quarter (24%) of children with autism are non-verbal or minimally verbal — problems that can persist into adulthood.

A review of over 200 published papers and more than 60 different intervention studies has now concluded that:

Interactive robot trains kids with autism

A humanoid robot has been designed, and shows promise, for teaching joint attention to children with ASD. Robots are particularly appealing to children, and even more so to those with ASD.

http://www.futurity.org/health-medicine/interactive-robot-trains-kids-with-autism/

Kids with autism mimic ‘more efficiently’

Woman and child playing pat-a-cake

We say so blithely that children learn by copying, but a recent study comparing autistic children and normally-developing ones shows there’s more to this than is obvious.

Ability to delay gratification predicts success only in some contexts

Marshmallows on plate

There's been a lot of talk in education about the message from research that self-control in pre-schoolers predicts their later success in the classroom and in life. While I do think that this is an important message that should be taken on board by educators and parents, it's worth ameliorating it somewhat with the odd caveat - as offered in this latest study.

Simon Makin at Scientific American:

Syndicate content