cerebral cortex

the gray matter outer layer of the cerebrum. The newest part of the brain in evolutionary terms; responsible for primary sensory functions, motor coordination and control, and most particularly, the "higher-order" functions of language and thinking.

Where Alzheimer's starts and how it spreads

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.


tags development: 

tags problems: 

Long-term meditation fights age-related cognitive decline

August, 2011

Another study adds to the weight of evidence that meditating has cognitive benefits. The latest finding points to brain-wide improvements in connectivity.

Following on from research showing that long-term meditation is associated with gray matter increases across the brain, an imaging study involving 27 long-term meditators (average age 52) and 27 controls (matched by age and sex) has revealed pronounced differences in white-matter connectivity between their brains.

The differences reflect white-matter tracts in the meditators’ brains being more numerous, more dense, more myelinated, or more coherent in orientation (unfortunately the technology does not yet allow us to disentangle these) — thus, better able to quickly relay electrical signals.

While the differences were evident among major pathways throughout the brain, the greatest differences were seen within the temporal part of the superior longitudinal fasciculus (bundles of neurons connecting the front and the back of the cerebrum) in the left hemisphere; the corticospinal tract (a collection of axons that travel between the cerebral cortex of the brain and the spinal cord), and the uncinate fasciculus (connecting parts of the limbic system, such as the hippocampus and amygdala, with the frontal cortex) in both hemispheres.

These findings are consistent with the regions in which gray matter increases have been found. For example, the tSLF connects with the caudal area of the temporal lobe, the inferior temporal gyrus, and the superior temporal gyrus; the UNC connects the orbitofrontal cortex with the amygdala and hippocampal gyrus

It’s possible, of course, that those who are drawn to meditation, or who are likely to engage in it long term, have fundamentally different brains from other people. However, it is more likely (and more consistent with research showing the short-term effects of meditation) that the practice of meditation changes the brain.

The precise mechanism whereby meditation might have these effects can only be speculated. However, more broadly, we can say that meditation might induce physical changes in the brain, or it might be protecting against age-related reduction. Most likely of all, perhaps, both processes might be going on, perhaps in different regions or networks.

Regardless of the mechanism, the evidence that meditation has cognitive benefits is steadily accumulating.

The number of years the meditators had practiced ranged from 5 to 46. They reported a number of different meditation styles, including Shamatha, Vipassana and Zazen.




tags development: 

tags memworks: 

tags problems: 

tags strategies: 

Brain differences reflecting expertise

April, 2011

A new imaging study reveals what’s going on in the brains of expert shogi players that’s different from those of amateurs. It’s all about developing instincts.

The mental differences between a novice and an expert are only beginning to be understood, but two factors thought to be of importance are automaticity (the process by which a procedure becomes so practiced that it no longer requires conscious thought) and chunking (the unitizing of related bits of information into one tightly integrated unit — see my recent blog post on working memory). A new study adds to our understanding of this process by taking images of the brains of professional and amateur players of the Japanese chess-like game of shogi.

Eleven professional, 9 high- and 8 low-rank amateur players of shogi were presented with patterns of different types (opening shogi patterns, endgame shogi patterns, random shogi patterns, chess, Chinese chess, as well as completely different stimuli — scenes, faces, other objects, scrambled patterns).

It was found that the board game patterns, but not the other patterns, stimulated activity in the posterior precuneus of all shogi players. This activity, for the professional players, was particularly strong for shogi opening and endgame patterns, and activity in the precuneus was the only regional activity that showed a difference between these patterns and the other board game patterns. For the amateurs however, there was no differential activity for the endgame patterns, and only the high-rank amateurs showed differential activity for the opening shogi patterns. Opening patterns tend to be more stereotyped than endgame patterns (i.e., endgame patterns are better reflections of expertise).

The players were then asked for the best next-move in a series of shogi problems (a) when they only had one second to study the pattern, and (b) when they had eight seconds. When professional players had only a second to study the problem, the caudate nucleus was active. When they had 8 seconds, activity was confined to the cerebral cortex, as it was for the amateurs in both conditions. This activity in the caudate, which is part of the basal ganglia, deep within the brain, is thought to reflect the development of an intuitive response.

The researchers therefore suggest that this type of intuition, an instinct achieved through training and experience, is what marks an expert. Making part of the process unconscious not only makes it faster, but frees up valuable space in working memory for aspects that need conscious thought.

The posterior precuneus directly connects with the dorsolateral prefrontal cortex, which in turn connects to the caudate. There is also a direct connection between the precuneus and the caudate. This precuneus-caudate circuit is therefore suggested as a key part of what makes a board-game expert an expert.




tags memworks: 

tags study: 

Subscribe to RSS - cerebral cortex